Investigation of the absorption spectrum of annealed Zn nanorods in oxygen flux using discrete dipole approximation theory
Subject Areas : Polymer
1 - Department of Engineering Sciences, Faculty of Advanced Technologies, University of MohagheghArdabili, Namin, Iran
Keywords:
Abstract :
In this work, the discrete dipole approximations (DDA) theorywas used to investigate the absorption spectrum of annealed Zn nano rods in oxygen flux. For this purpose, the Zn nanorod was replaced with 1786 dipoles arranged on a rod-shaped structure, and the interaction of these dipoles with polarized light was investigated. In this study, it was found that the extinction spectrum has two absorption peaks, which are related to the plasmonic oscillations, and Zn nanorods annealed in oxygen flux show metallic behavior. Changes in plasmonic oscillations were investigated by changing the deposition angle of nanorods and it was found that the oscillations in the direction perpendicular to the axis of the nanorod are strongly dependent on the angle of deposition and with increasing deposition angle, the number of oscillating dipoles and consequently the intensity of the absorption decreases sharply.
[1]. F. Abdi, A. Siabi, H. Savaloni, Journal of Theoretical and Applied Physics, 6, 4 (2012).
[2]. F. Abdi, A. Siabi, H. Savaloni, Journal of Theoretical and Applied Physics, 6, 11 (2012).
[3]. F.abdi, H.savaloni, Optics Communications, 80, 69 (2016)
[4]. F.abdi, H.savaloni , Applied Surface Science , 330, 74 (2015)
[5]. S.H. Hsu, E.S. Liu, Y.C. Chang, Physica Status Solidi A: Applications and Materials Science,
250, 876 (2008).
[6]. G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, K. Robbie, Applied Physics Letters, 87,3 (2005).
[7]. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, M. Schubert, Applied Physics
Letters, 94, 1 (2009).
[8]. H.Savaloni, A.Esfandiar, Optics Communications, 283, 2849 (2010)
[9]. F.babaei, H.Savaloni, Plasmonics, 13, 1 (2017)
[10]. A. V. Kabashin, P. Evans, S. Pastkovsky, Nature Materials, 8, 867 (2009).
[11]. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science, 295, 2427 (2002).
[12]. C. Dekker, Phys. Today, 52, 22 (1999).
[13]. J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res., 32, 435 (1999).
[14]. Y. Cui, C. M. Lieber, Science, 291, 851 (2001).
[15]. C. S. Chang, S. Chattopadhyay, L. C. Chen, K. H. Chen, C. W. Chen, Y. F. Chen, R. Collazo,
Z. Sitar,Phys. Rev. B, 68, 125322 (2003).
[16]. Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, A. R. Krauss, Appl. Phys. Lett., 70,
3308 (1997).
[17]. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber ,R. Russo, P. Yang ,
Science, 2001, 292(1897)
[18]. V. Poborchii, T. Tada, T. Kanayama, A. Moroz, Appl. Phys. Lett., 82, 508(2003).
[19]. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Nano Lett., 3, 1229
(2003).
[20]. H. Savaloni, M. Fakharpour ,A.Siabi-Garjan, F. Placido, F.Babaei, Applied Surface Science,
39, 3234 (2017).
[21]. A. Siabi-Garjan, H. Savaloni, Plasmonics, 10, 861 (2015)
[22]. F. Abdi, Chinese Physics B, 30 (11), 117802 (2021).