Adsorption of Citalopram on C60 nanocage as anti-depression drug carriers
Subject Areas : PolymerSaied Jamaladdin Emamjome Koohbanani 1 , Sayed Ali Ahmadi 2 , Dadkhoda Ghazanfari 3 , Enayatollah Sheikhhosseini 4
1 - Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
2 - Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
3 - Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
4 - Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
Keywords:
Abstract :
In this study, we used the computational process by DFT with the B3LYP/6-311+G (d, p) quantum method to discover the reactivity properties and dope and determine the adsorption behavior of Citalopram on C60 (ih) as anti-depression drug carriers in the gas phase. We calculated chemical structural parameters such as dipole momentum) 3.7193D) and electronic parameters (σ(6.45), µ(-2.70), ω(16.5), χ(2.70) and η(1.53)) which can determine the chemical reactivity of Citalopram. According to the calculated HOMO(-4.25eV) and LUMO(-1.15eV) energy value, Citalopram is a stable and chemical active compound and has chemical reactivity. It has six active sides, which lead to adsorb on C60 nanocage as a drug carrier. This Surface adsorption helps Citalopram transfer to biological systems much better.
[1]. K. Bezchlibnyk-Butler, I. Aleksic, S.H. Kennedy, J. Psychiatry Neurosci., 25, 241 (2000).
[2]. M.S. de Lima, Evid. Based Ment. Heal, 4, 80 (2001).
[3]. K.Adibkia, Y. Omidi, M.R. Siahi, A.R. Javadzadeh, M. Barzegar-Jalali, J. Barar, N. Maleki, G.
Mohammadi, A. Nokhodchi, J. Ocul. Pharmacol. Ther., 23, 421 (2007).
[4]. P.M. Tiwari, K. Vig, V.A. Dennis, S.R. Singh, Nanomater.,1, 31 (2011).
[5]. S. Zinjarde, Chronic. Young Sci., 3, 1 (2012).
[6]. K. Bahrami, P. Nazari, M. Nabavi, M. Golkar, A. Almasirad, A.R. Shahverdi, Nanomedicine, 1,
155 (2014).
[7]. V. Ravishankar Rai, A. Jamuna Bai, A. Mendez-Vilas, Formatex, Microbiology Series, 3, 197
(2011).
[8]. C. Marambio-Jones, E.M.V. Hoek, J. Nanopart. Res.,12, 1531 (2010).
[9]. K. Adibkia, M. Barzegar-Jalali, A. Nokhodchi, M. Siahi Shadbad, Y. Omidi, Y. Javadzadeh,
Pharm. Sci., 15, 303 (2010).
[10]. K. Adibkia, Y. Javadzadeh, S. Dastmalchi, G. Mohammadi, F.K. Niri, M. Alaei-Beirami,
Colloids. Surf. B Biointerfaces, 83, 155 (2011).
[11]. G. Mohammadi, A. Nokhodchi, M. Barzegar-Jalali, F. Lotfipour, K. Adibkia, N. Ehyaei, H.
Valizadeh, Colloids. Surf. B Biointerfaces, 88, 39 (2011).
[12]. R.R. Kannan, A.J.A. Jerley, M. Ranjani, V.S.G. Prakash, J. Biomed. Sci. Engine., 4, 248
(2011).
[13]. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomedicine, 7,
6003 (2012).
[14]. A. Besinis, T. De Peralta, R.D. Handy, Nanotoxicology, 8, 1 (2014).
[15]. Z. Emami-Karvani, P. Chehrazi, Afr. J. Microbiol. Res., 5, 1368 (2011).
[16]. M.S. Usman, M.E. El Zowalaty, K. Shameli, N. Zainuddin, M. Salama, N.A. Ibrahim, Int. J.
Nanomedicine, 8, 4467 (2013).
[17]. Q. Chen, Y. Xue, J. Sun, Int. J. Nanomedicine, 8, 1129 (2013).
[18]. S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microbiol., 73, 1712 (2007).
[19]. M. Zarei, A. Jamnejad, E. Khajehali, Jundishapur. J. Microbiol., 7, E8720 (2014).
[20]. S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Langmuir., 24, 6409 (2008).
[21]. C. Buzea, I.I. Pacheco, K. Robbie, Biointerphases, 2, MR17 (2007).
[22]. S.H. Kang, G. Kim, Y.K. Kwon, J. Phys. Condens. Matter., 23, 505301 (2011).
[23]. S. Mallawaarachchi, M. Premaratne, P.K. Maini, J. Sel. Top. Quantum Electron., 25, 1 (2019).
[24]. K. Liz., Phys. World, 18, 9 (2005).
[25]. S. Wang, K. Poon, Z. Cai, J. Hazard Mater., 342, 643 (2018).
[26]. M. Adolfsson-Erici, M. Pettersson, J. Parkkonen, J. Sturve, Chemosphere, 46, 1485 (2002).
[27]. M. Zhao, Z. Huang, S. Wang, L. Zhang, C. Wang, Microporous Mesoporous Mater., 294,
109905, (2020).
[28]. H.R. Khataee, M.Y. Ibrahim, S. Sourchi, L. Eskandari, M.A.T. Noranis, J. Comput. Math.
Electr. Electron. Eng., 31, 387 (2012).
[29]. A.E. Yavuz, S. Haman Bayari, N. Kazanci, J. Mol. Struct., 924, 313 (2009).
[30]. M.S. Garelli, F.V. Kusmartsev, Eur. Phys. J. B., 48, 199 (2005).
[31]. L.H. Trinh, A. Takzare, D.D. Ghafoor, A.F. Siddiqi, S. Ravali, M. Shalbaf, M. Bakhtiar, J.
Drug Deliv. Sci. Technol., 52, 818 (2019).
[32]. A. Ceulemans, J.T. Muya, G. Gopakumar, M.T. Nguyen, Chem. Phys. Lett., 461, 226 (2008).
[33]. J.T. Muya, M.T. Nguyen, A. Ceulemans, Chem. Phys. Lett., 483, 101 (2009).
[34]. S. Jo, S. Kim, B.H. Lee, A. Tandon, B. Kim, S.H. Park, M.K. Kim, Int. J. Mol. Sci., 19, 1895
(2018).
[35]. C. Wang, W. Huang, J. Lin, F. Fang, X. Wang, H. Wang, Chemosphere, 241, 125086 (2020).
[36]. J. Xu, Y. Li, Y. Xiang, X. Chen, Nanoscale Res. Lett., 8, 54 (2013).
[37]. Y. Shirai, A.J. Osgood, Y. Zhao, K.F. Kelly, J.M. Tour, Nano Lett., 5, 2330 (2005).
[38]. G.E.S.M.J. Frisch, G.W. Trucks, H.B. Schlegel, B.M.M.A. Robb, J.R. Cheeseman, G.
Scalmani, V. Barone, H.P.H.G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, M.H.A.F. Izmaylov,
J. Bloino, G. Zheng, J.L. Sonnenberg, T.N.M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, J.Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, E.B.J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, J.N.K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. T.K. Raghavachari, A.
Rendell, J.C. Burant, S.S. Iyengar, J.B.C.M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox,
R.E.S.V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, J.W.O.O. Yazyev, A.J. Austin, R. Cammi,
C. Pomelli, G.A.V.R.L. Martin, K. Morokuma, V.G. Zakrzewski, A.D. D.P. Salvador, J.J.
Dannenberg, S. Dapprich, J.C.O. Farkas, J.B. Foresman, J.V. Ortiz, D.J. Fox, Gaussian 03.
Revision A, 2. Available online in: http: // www.guassian.com.
[39]. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science., 321, 385 (2008).
[40]. V.V. Kleandrova, F. Luan, A.S. Planche, M.N.D.S. Cordeiro, Curr. Bioinform., 10, 565
(2015).
[41]. S.K. Sharma, L.Y. Chiang, M.R. Hamblin, Nanomedicine (Lond), 6, 1813 (2011).
[42]. M.H. Fekri, R. Bazvand, M. Soleymani, M. Razavi Mehr, Int. J. Nano Dimens., 11, 346
(2020).