مدل سازی چند لایه زنجیره تامین محصولات دارای طول عمر محدود شرکت فروشگاه های زنجیره ای اتکا (مطالعه موردی: روغن زیتون)
محورهای موضوعی : مدیریت صنعتیMohammad Samie Mohammadi 1 , Mahdi Yousefi Nejad Attari 2
1 - Department of industrial engineering, Azad University, Bonab branch, Bonab, Iran
2 - Department of industrial engineering, Azad University, Bonab branch, Bonab, Iran
کلید واژه: Supply Chain, زنجیره تامین, روغن زیتون, کالاهای دارای طول عمر محدود, شرکت فروشگاههای زنجیرهای اتکا, of limited life products, Olive oil, ETKA&rsquo, s stores,
چکیده مقاله :
بررسی کالاهای دارای طول عمر محدود در زنجیره تامین در زنجیره تامین تولید و توزیع مواد غذایی اهمیت فوق العاده ای دارد. یکی از این محصولات روغن زیتون تولیدی شرکت فروشگاههای اتکا است که تولید و توزیع آن با توجه به عمر محدود همواره با چالشهای مختلفی همراه است. لذا در این تحقیق، با توجه به بررسی وضعیت کنونی زنجیره تامین شرکت فروشگاههای اتکا در سه سطح تولید کننده، انبارش و توزیع کننده، مدل جدیدی برای تعیین مقدار بهینه توزیع که منجر به کاهش هزینهها در این شرکت شود، ارائه شده است. ابتدا مدل سه سطحی ای را ارایه و تشریح شده و سپس با استفاده از نرم افزار گمز و هم چنین الگوریتم ژنتیک و با استفاده از اطلاعات دریافتی از شرکت فروشگاههای مقدار بهینه توزیع روغن زیتون تعیین شده است. که با توجه به نتایجی که از حل مدل بدست آمده است، اجرای مدل برای شرکت فروشگاههای اتکا نه تنها مقدار بهینه توزیع را مشخص کرده بلکه منجر به کاهش هزینهها میشود که میتوان هزینههای حاصله از آن را در بخشهای مختلف دیگری سرمایه گذاری کرد.
Studying the Supply chain for products with the limited lifespan is important not only in the supply chain but also in production and distribution of food. One of these products is the Olive oil produced by the ETKA Company, whose production and distribution always have different challenges with regard to their limited life. Therefore, in this study, considering the current status of the supply chain of the supermarket stores in three levels of producer, storage, and distributor, a new model for determining the optimal distribution that leads to lower costs in the company is presented. Firstly, the three-level model was presented and described and then using the GAMS software and also the GA algorithm and by using the information received from the company, the optimum distribution of olive oil was determined. Based on the results obtained from the model’s solution, implementation of the model for the supermarket stores not only determines the optimal distribution but also leads to lower costs, which can be spent on investment in different sectors.
1- Berk, E., & Gürler, Ü. (2008). Analysis of the (Q, r) inventory model for perishables with positive lead times and lost sales. Operations Research, 56(5), 1238-1246.
2- Chen, L. H., & Kang, F. S. (2007). Integrated vendor–buyer cooperative inventory models with variant permissible delay in payments. European Journal of Operational Research, 183(2), 658-673.
3- Emmons, H., & Gilbert, S. M. (1997). The role of returns policies in pricing and inventory decisions for catalogue goods. JOT-Journal fur Oberflachentechnik, 37(5), 276.
4- Fries, B. E. (1975). Optimal ordering policy for a perishable commodity with fixed lifetime. Operations Research, 23(1), 46-61.
5- Fujiwara, O., Soewandi, H., & Sedarage, D. (1997). An optimal ordering and issuing policy for a two-stage inventory system for perishable products. European Journal of Operational Research, 99(2), 412-424.
6- Giannoccaro, I., & Pontrandolfo, P. (2004). Supply chain coordination by revenue sharing contracts. International journal of production economics, 89(2), 131-139.
7- Goyal, S. K., & Gupta, Y. P. (1989). Integrated inventory models: the buyer-vendor coordination. European journal of operational research, 41(3), 261-269.
8- Samrah, S. P., Acharya, D., & Goyal, S. K. (2007). coordination and profit sharing between manufacturer and a buyer with target profit under consideration. European Journal of Operational Research, 182(3), 1469-1478.
9- Guide Jr, V. D. R., Souza, G. C., Van Wassenhove, L. N., & Blackburn, J. D. (2006). Time value of commercial product returns. Management Science, 52(8), 1200-1214.
10-Huang, K.-L., Kuo, C.-W.,& Lu, M.-L. (2014). Wholesale price rebate vs. capacityexpansion: The optimal strategy for seasonal products in a supply chain.European Journal of Operational Research, 234, 77–85.
11-Hwang, H., & Hahn, K. H. (2000). An optimal procurement policy for items with an inventory level-dependent demand rate and fixed lifetime. European Journal of Operational Research, 127(3), 537-545.
12-Jaber, M. Y., & Osman, I. H. (2006). Coordinating a two-level supply chain with delay in payments and profit sharing. Computers & Industrial Engineering, 50(4), 385-400.
13-Kadambala, D. K., Subramanian, N., Tiwari, M. K., Abdulrahman, M., & Liu, C. (2017). Closed loop supply chain networks: Designs for energy and time value efficiency. International Journal of Production Economics, 183, 382-393.
14-Kanchanasuntorn, K., & Techanitisawad, A. (2006). An approximate periodic model for fixed-life perishable products in a two-echelon inventory–distribution system. International Journal of Production Economics, 100(1), 101-115.
15-Liu, L., & Lian, Z. (1999). (s,S) model for inventory with fixed lifetime. Operations Research, 47(1), 130–158.
16-Mirmajlesi, S. R., & Shafaei, R. (2016). An integrated approach to solve a robust forward/reverse supply chain for short lifetime products. Computers & Industrial Engineering, 97, 222-239.
17-Nahmias, S. (1975). Optimal ordering policies for perishable inventory—II. Operations Research, 23(4), 735-749.
18-Nandakumar, P., & Morton, T. E. (1993). Near myopic heuristics for the fixed-life perishability problem. Management Science, 39(12), 1490-1498.
19-Sarathi, G. P., Sarmah, S. P., & Jenamani, M. (2014). An integrated revenue sharing and quantity discounts contract for coordinating a supply chain dealing with short life-cycle products. Applied Mathematical Modelling, 38(15), 4120-4136.
20-Sazvar, Z., Mirzapour Al-e-Hashem, S. M. J., Baboli, A., & Jokar, M. A. (2014). A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products. International Journal of Production Economics, 150, 140-154.
21-Simchi-Levi D, Kaminsky P. )2003(. Designing and Managing the Supply Chain. 2nd Edition, McGraw-Hill.
22-Syarif, A., Yun, Y. and Gen, M., )2002(. Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach. Computers & Industrial Engineering, 43(1), pp.299-314.
23-Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management science, 48(8), 992-1007.
24-Yongrui .D., Jiazhen. H., Yanxia. Z., & Jianjun. Z. (2012). Two level supply chain coordination with delay in payments for fixed lifetime products. Computers & Industrial Engineering ,63 ,456–463.
25-Zahiri, B., Torabi, S. A., Mousazadeh, M., & Mansouri, S. A. (2015). Blood collection management: Methodology and application. Applied Mathematical Modelling, 39(23), 7680-7696.
_||_1- Berk, E., & Gürler, Ü. (2008). Analysis of the (Q, r) inventory model for perishables with positive lead times and lost sales. Operations Research, 56(5), 1238-1246.
2- Chen, L. H., & Kang, F. S. (2007). Integrated vendor–buyer cooperative inventory models with variant permissible delay in payments. European Journal of Operational Research, 183(2), 658-673.
3- Emmons, H., & Gilbert, S. M. (1997). The role of returns policies in pricing and inventory decisions for catalogue goods. JOT-Journal fur Oberflachentechnik, 37(5), 276.
4- Fries, B. E. (1975). Optimal ordering policy for a perishable commodity with fixed lifetime. Operations Research, 23(1), 46-61.
5- Fujiwara, O., Soewandi, H., & Sedarage, D. (1997). An optimal ordering and issuing policy for a two-stage inventory system for perishable products. European Journal of Operational Research, 99(2), 412-424.
6- Giannoccaro, I., & Pontrandolfo, P. (2004). Supply chain coordination by revenue sharing contracts. International journal of production economics, 89(2), 131-139.
7- Goyal, S. K., & Gupta, Y. P. (1989). Integrated inventory models: the buyer-vendor coordination. European journal of operational research, 41(3), 261-269.
8- Samrah, S. P., Acharya, D., & Goyal, S. K. (2007). coordination and profit sharing between manufacturer and a buyer with target profit under consideration. European Journal of Operational Research, 182(3), 1469-1478.
9- Guide Jr, V. D. R., Souza, G. C., Van Wassenhove, L. N., & Blackburn, J. D. (2006). Time value of commercial product returns. Management Science, 52(8), 1200-1214.
10-Huang, K.-L., Kuo, C.-W.,& Lu, M.-L. (2014). Wholesale price rebate vs. capacityexpansion: The optimal strategy for seasonal products in a supply chain.European Journal of Operational Research, 234, 77–85.
11-Hwang, H., & Hahn, K. H. (2000). An optimal procurement policy for items with an inventory level-dependent demand rate and fixed lifetime. European Journal of Operational Research, 127(3), 537-545.
12-Jaber, M. Y., & Osman, I. H. (2006). Coordinating a two-level supply chain with delay in payments and profit sharing. Computers & Industrial Engineering, 50(4), 385-400.
13-Kadambala, D. K., Subramanian, N., Tiwari, M. K., Abdulrahman, M., & Liu, C. (2017). Closed loop supply chain networks: Designs for energy and time value efficiency. International Journal of Production Economics, 183, 382-393.
14-Kanchanasuntorn, K., & Techanitisawad, A. (2006). An approximate periodic model for fixed-life perishable products in a two-echelon inventory–distribution system. International Journal of Production Economics, 100(1), 101-115.
15-Liu, L., & Lian, Z. (1999). (s,S) model for inventory with fixed lifetime. Operations Research, 47(1), 130–158.
16-Mirmajlesi, S. R., & Shafaei, R. (2016). An integrated approach to solve a robust forward/reverse supply chain for short lifetime products. Computers & Industrial Engineering, 97, 222-239.
17-Nahmias, S. (1975). Optimal ordering policies for perishable inventory—II. Operations Research, 23(4), 735-749.
18-Nandakumar, P., & Morton, T. E. (1993). Near myopic heuristics for the fixed-life perishability problem. Management Science, 39(12), 1490-1498.
19-Sarathi, G. P., Sarmah, S. P., & Jenamani, M. (2014). An integrated revenue sharing and quantity discounts contract for coordinating a supply chain dealing with short life-cycle products. Applied Mathematical Modelling, 38(15), 4120-4136.
20-Sazvar, Z., Mirzapour Al-e-Hashem, S. M. J., Baboli, A., & Jokar, M. A. (2014). A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products. International Journal of Production Economics, 150, 140-154.
21-Simchi-Levi D, Kaminsky P. )2003(. Designing and Managing the Supply Chain. 2nd Edition, McGraw-Hill.
22-Syarif, A., Yun, Y. and Gen, M., )2002(. Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach. Computers & Industrial Engineering, 43(1), pp.299-314.
23-Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management science, 48(8), 992-1007.
24-Yongrui .D., Jiazhen. H., Yanxia. Z., & Jianjun. Z. (2012). Two level supply chain coordination with delay in payments for fixed lifetime products. Computers & Industrial Engineering ,63 ,456–463.
25-Zahiri, B., Torabi, S. A., Mousazadeh, M., & Mansouri, S. A. (2015). Blood collection management: Methodology and application. Applied Mathematical Modelling, 39(23), 7680-7696.