طراحی مدل هوش تجاری چابک با استفاده از تحلیل مضمون و رویکرد فازی در هلدینگ فناوری اطلاعات و ارتباطات
محورهای موضوعی :
مدیریت صنعتی
ehsan afsari
1
,
jalal haghighatmonfared
2
*
,
tahmoores sohrabi
3
1 - PhD Student in Industrial Management - System, Faculty of Management, Central Tehran Azad University
2 - استادیار گروه مدیریت صنعتی دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران
3 - Assistant Professor, Department of Industrial Management, Islamic Azad University, Central Tehran Branch, Tehran, Iran
تاریخ دریافت : 1398/10/04
تاریخ پذیرش : 1399/01/18
تاریخ انتشار : 1399/02/10
کلید واژه:
رویکرد فازی,
هوش تجاری چابک,
تحلیل مضمون,
فناوری اطلاعات و ارتباطات,
چکیده مقاله :
اطلاعات و دانش در هزاره سوم به ثروت اصلی سازمانها تبدیل شده و بنگاه های تجاری و واحدهای تولیدی برای کسب مزیت رقابتی به دنبال استفاده هر چه بیشتر از این ثروت در تصمیمات خطیر خود در محیط پویای امروز میباشند. با به کارگیری فناوری اطلاعات و ارتباطات در تمامی ارکان کسب و کار نیز، سیستمها و نرم افزارهای سازمانی، بستر فعالیت های کسب و کار را شکل داده و تبدیل به مخزن نوینی برای داده های سازمانی شده اند. یکی از این ابزارهای کارآمد در فرایند تصمیم گیری در هر سازمان هوش تجاری چابک است.در این تحقیق بعد از بررسی ادبیات موضوع و استخراج کدها، مضمون های پایه و مضمون های ساختاریافته، با استفاده از روش گروه کانونی با خبرگان و متخصصین، مؤلفه های مؤثر در طراحی مدل هوش تجاری چابک شناسایی شده اندو سپس مدل نهایی با استفاده از تکنیک ویکور فازی در هلدینگ فناوری اطلاعات و ارتباطات شکل گرفت.
چکیده انگلیسی:
Abstract :In the third millennium, information and knowledge have become the core wealth of organizations , and businesses and manufacturing units are seeking to take advantage of this wealth to make the most of their critical decisions in today ' s dynamic environment . With the use of information and communication technology in all aspects of business , organizational systems and software have shaped the business context and become a new repository for organizational data . One of these tools is effective in the decision making process of any agile business intelligence organization. In this research , after reviewing the literature on the subject and extracting codes, basic themes and structured themes , using the focus group approach with experts and experts , Effective in designing the agile business intelligence model identified , then the final model was developed using fuzzy Victor technique in Information and Communications Technologyholding .
منابع و مأخذ:
Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology 3 (2), 77-101.
Collier, K. (2012). Agile Analytics. A value driven approach to business intelligence and data warehousing. Agile Software Development Series, Pearson Education, 4(2), 3–2.
Corr, L. (2011). Aplikasi Business Intelligence (BI) Data Pasien Rumah sakit. Aplikasi Business Intelligence (BI) Data Pasien Rumah sakit 3(1), 12–22.
Farrokhi, V. & Moradi, L. (2012). The necessities for building a model to evaluate Business Intelligence projects-Literature Review. Intelligence (BI) Data Pasien Rumah sakit 4(2), 36–47.
Ghadim Abadi, H. (2016). Implementation of Business Intelligence System by Investigating Key Indicators of Human Resource Area Performance (Case Study: Harbor & Maritime Organization). Maritime Transport Industry 2(1), 21- 43.
Guster, D. et al. (2012), the application of business intelligence to higher education: Technical and managerial perespectives. Journal of Information Technology Management 3 (3), 1042-1319.
Hajipour Shooshtari, A., & Saffari Ashtiani, M. ( 2014). Investigating the Relationship between Business Intelligence and Psychological Empowerment. Journal of Management Studies 22(1), 199–73.
Hoglund, E. (2017). Focus groups–stimulating and rewarding cooperation between the library and its patrons. Qualitative and Quantitative Methods in Libraries 3 (2), 425-431.
Johar, A. & Vatresia, L. (2015). Agile data warehouse design; collaborative dimensional modeling, from whiteboard to star schema. Burwood House 3(1): 3–26.
Matin, A. & Mohammadi Zadeh, S.(2013). Review of Linear Commercialization Models. Technology Growth 6(49), 11–99
Phan, D., and Vogel, D. (2013). A model of customer relationship management and catalogue and online retailers. Journal of Information & business intelligence systems Management 47, 69-77.
Rezaei, S., MirAbedini, J., & Abtahi, A. (2018). Factors Influencing Business Intelligence Implementation in the Iranian Banking Industry, Journal of Intelligent Business Management Studies 3(1), 23–34
Rouhani, S & Zare Roasan, A. (2012). Business Intelligence Level Evaluation Model in Organizational Systems, Journal of Information Technology Management Studies 1(2), 121–105.
Turricchia, E. (2013). Pervasive Business Intelligence, Agile Software Development Series. Pearson Education 5(1), 12–19.
_||_
Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology 3 (2), 77-101.
Collier, K. (2012). Agile Analytics. A value driven approach to business intelligence and data warehousing. Agile Software Development Series, Pearson Education, 4(2), 3–2.
Corr, L. (2011). Aplikasi Business Intelligence (BI) Data Pasien Rumah sakit. Aplikasi Business Intelligence (BI) Data Pasien Rumah sakit 3(1), 12–22.
Farrokhi, V. & Moradi, L. (2012). The necessities for building a model to evaluate Business Intelligence projects-Literature Review. Intelligence (BI) Data Pasien Rumah sakit 4(2), 36–47.
Ghadim Abadi, H. (2016). Implementation of Business Intelligence System by Investigating Key Indicators of Human Resource Area Performance (Case Study: Harbor & Maritime Organization). Maritime Transport Industry 2(1), 21- 43.
Guster, D. et al. (2012), the application of business intelligence to higher education: Technical and managerial perespectives. Journal of Information Technology Management 3 (3), 1042-1319.
Hajipour Shooshtari, A., & Saffari Ashtiani, M. ( 2014). Investigating the Relationship between Business Intelligence and Psychological Empowerment. Journal of Management Studies 22(1), 199–73.
Hoglund, E. (2017). Focus groups–stimulating and rewarding cooperation between the library and its patrons. Qualitative and Quantitative Methods in Libraries 3 (2), 425-431.
Johar, A. & Vatresia, L. (2015). Agile data warehouse design; collaborative dimensional modeling, from whiteboard to star schema. Burwood House 3(1): 3–26.
Matin, A. & Mohammadi Zadeh, S.(2013). Review of Linear Commercialization Models. Technology Growth 6(49), 11–99
Phan, D., and Vogel, D. (2013). A model of customer relationship management and catalogue and online retailers. Journal of Information & business intelligence systems Management 47, 69-77.
Rezaei, S., MirAbedini, J., & Abtahi, A. (2018). Factors Influencing Business Intelligence Implementation in the Iranian Banking Industry, Journal of Intelligent Business Management Studies 3(1), 23–34
Rouhani, S & Zare Roasan, A. (2012). Business Intelligence Level Evaluation Model in Organizational Systems, Journal of Information Technology Management Studies 1(2), 121–105.
Turricchia, E. (2013). Pervasive Business Intelligence, Agile Software Development Series. Pearson Education 5(1), 12–19.