References:
[1] Abdulhai, B. P. ,“Short-term traffic flow prediction using neuro-genetic algorithms”. ITS Journal, Vol.7, pp.3-41, 2002.
[2] P. Allaby, B. Hellinga, and Bullock, M. ,“Variable Speed Limits: Safety and Operational Impacts of a Candidate Control Strategy for an Urban Freeway”, IEEE Intelligent Transportation Systems Conference. Toronto, Canada, 2006.
[3] Y. Amit, & D. Geman ,“Shape Quantization and Recognition with Randomized Trees”. NEURAL COMPUTATION, Vol.9, Issue.7, pp.1545-1588, 1997.
[4] F. Attneave ,“Applications of information theory to psychology: a summary of basic concepts, methods, and results”. Holt, 1959.
[5] M. Ben-Bassat, “Use of Distance Measures, Information Measures and Error Bounds in Feature Evaluation”, Handbook of Statistics, Classification, Pattern Recognition and Reduction of Dimensionality, Vol.2, pp.773-791, 1982.
[6] L. Breiman, “Bagging predictors”, Machine Learning, Vol.24, Issue.2, pp.123-140, 1996.
[7] L. Breiman, J. H. Friedman, R. A. Olshen, & C. J. Stone, “Classification and Regression Trees”, Chapman & Hall, New York, 1984.
[8] L. Brieman, “Random Forests”. Machine Learning, Vol.45, Issue.1, pp.5-32, 2001.
[9] M. Carey, M. Bowers, “A Review of Properties of Flow–Density Functions”, Transport Reviews, Vol.32, Issue.1, pp.49-73, 2012.
[10] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, & L. Han,” Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions”. Expert Systems with Applications, Vol.36, Issue.3, pp.6164-6173, 2009.
[11] B. Cestnik, “Estimating probabilities: A crucial task in machine learning”, Ninth European Conference on Artificial Intelligenc, Stokholm, pp.147-149, 1990.
[12] C. Chen, Y. Wang, L. Li, J. Hu, & Z. Zhang. “The retrieval of intra-day trend and its influence on traffic prediction”. Transportation Research Part C, Vol.22, Issue(June, 2012), pp.103-118, 2012.
[13] R. Chrobok, O. Kaumann, J. Wahle, M. Schreckenberg, “Different methods of traffic forecast based on real data”. European Journal of Operational Research , Vol.155 Issue.3, pp.558-568, 2004.
[14] P. Clark, R. Boswell, “Rule induction with CN2: Some recent improvements”. In Y. Kodratoff (Ed.) Proceedings of the 5th European conference, pp.151-163, 1991.
[15] P. Clark, & T. Niblett, “The CN2 Induction Algorithm. Machine Learning”, Vol.3, Issue.4, pp.261-283, 1989.
[16] E. Cook, L. Goldman,” Empiric comparison of multivariate analytic techniques: Advantages and disadvantages of recursive partitioning analysis”, Journal of Chronic Diseases, Vol.37, pp.721-731, 1984.
[17] T. G. Dietterich., “An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization”, Machine Learning, Vol.40, Issue.2, pp.139-157, 2000.
[18] S. Dzeroski, B. Cestnik , I. Petrovski., “Using the m-estimate in rule induction”, Journal of Computing and Information Technology, Vol.1, Issue.1, pp.37-46, 1993.
[19] A. H. Ghods, L. Fu, A. Rahimi-Kian, “An Efficient Optimization Approach to Real-Time Coordinated and Integrated Freeway Traffic Control”, IEEE Transactions on Intelligent Transportation Systems, Vol.11, Issue.4, pp.872-884, 2010.
[20] J. Guo, B. Williams, B. Smith, “Data collection time intervals for stochastic short-term traffic flow forecasting”, Transportation Research Record: Journal of the Transportation Research Board, Issue.2024, pp.18-26, 2007. [21] J. Han, M. Kamber, J. Pei. “Data Mining Concepts and Techniques”, Morgan Kaufmann; 3rd edition, July 6, 2011.
[22] A. Hegyi, B. Schutter. “Optimal Coordination of Variable Speed Limits to Suppress Shock Waves”, Transportation Research Record, No.1852, pp.167-174, 2003.
[23] T. K. Ho, “The Random Subspace Method for Constructing Decision Forests”, IEEE Transactions on Pattern Analysis and Machine Intelligence Pami, Vol.20, Issue.8, pp.832-844, 1998.
[24] W.-C. Hong., “Traffic Flow Forecasting by Seasonal SVR with Chaotic Simulated Annealing Algorithm”, Neurocomputing, Vol.74, Issue.12-13, pp.2096-2107, 2011.
[25] G. V. Kass.,” An Exploratory Technique for Investigating Large Quantities of Categorical Data”, Applied Statistics, Vol.29, Issue.2, pp.119-127, 1980.
[26] N. Lavrac, B. Kavsek, P. Flach, L. Todorovski, “Subgroup Discovery with CN2-SD”, Journal of Machine Learning Research, Vol.5, pp.153-188, 2004.
[27] J. Li, Q. Chen, D. Ni, H. Wang., “Analysis of LWR Model with Fundamental Diagram Subject to Uncertainty”, Greenshields 75 Symposium. Woods Hole MA: Transportation Research Board, pp.74-83, 2011.
[28] D. Lili, S. Peeta, Y. Hoon Kim. “An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks”. Transportation Research Part B, Vol.46, pp.235-252, 2012.
[29] W.Y. Loh, Y-S shih., “Split selection methods for classification trees”, Statistics Sinica, Vol.7, pp.815-840, 1997.
[30] R. Michalski., “On the quasi-minimal solution of the general covering problem”, 5th Int. Symposium on Information Processing, pp.125-128, Bled, Yugoslavia 1969.
[31] M. Mozina, J. Demsar, M. Kattan, B. Zupan., “Nomograms for Visualization of Naive Bayesian Classifier”, Lecture Notes in Computer Science, Vol.3202, pp.337-348, 2004.
[32] T. Oda., “An algorithm for prediction of travel time using vehicle sensor data”, Third International Conference on Road Traffic Control, pp.40-44. London, England, 1990.
[33] M. Papageorgiou, I. Papamichail, A. Messmer, Y. Wang., “Traffic Simulation with METANET”, Fundamentals of Traffic Simulation, International Series in Operations Research & Management Science, pp.399-430. New York Dordrecht Heidelberg London, Springer, 2010.
[34] D. Park, L. R. Rilett, “Forecasting multiple-period freeway link travel times using modular neural networks”. Transportation Research Record, Vol.1617, pp.63-70, 1998.
[35] J. Quinlan, “Induction of decision trees”, Machine Learning, pp.81-106, 1986.
[36] J. Quinlan, “Simplifying decision trees”. International Journal of Machine Studies, Vol.27, pp.221-234, 1987.
[37] J. R. Quinlan, “C4.5: Programs for Machine Learning”, Morgan Kaufmann, 1993.
[38] L. Rokach and O. Maimon. “Decision trees”. In Lior Rokach and Oded Maimon (eds) Data Mining and Knowledge Discovery Handbook, pp.165-192, Springer, NY, 2010.
[39] L. Rokach, O. Maimon, “Top-Down Induction of Decision Trees Classifiers — A Survey”, IEEE Transaction on Systems, Man and Cybernetics—part C: applications and reviews, Vol.35, Issue.4, pp.476-487, 2005.
[40] B. Smith, M. Demetsky,“Traffic flow forecasting: comparison of modeling approaches”, Journal of Transportation Engineering, Vol.123, Issue.4, pp.261-266, 1997.
International Journal of Smart Electrical Engineering, Vol.1, No.3, Fall 2012 ISSN: 2251-9246
193
[41] B. Smith, B. Williams, R. Oswald. “Comparison of parametric and nonparametric models for traffic flow forecasting”, Transportation Research Part C. Emerging Technologies, Vol.10, Issue.4, pp.303-32, 2002.
[42] “Transportation Research Board”. Highway Capacity Manual. Washington DC: the National Research Council, 2000.
[43] J. van Lint, “Online Learning Solutions for Freeway Travel Time Prediction”, IEEE Transactions on Intelligent Transportation Systems, pp.38-47, 2008.
[44] C. Wu, C. Wei, D. Su, M. Chang, J. Ho.,“Travel time prediction with support vector regression”, Intelligent Transportation Systems, pp.1438-1442, Shanghai, China, 2003.
[45] K. Wunderlich, D. Kaufman, R. Smith,“Travel time prediction for decentralized route guidance architectures”, IEEE Transactions on Intelligent Transportation Systems, Vol.1, Issue.1, pp.4-14, 2000.
[46] F. Yang, Z. Yin, H. Liu, B. Ran.,“On line recursive algorithm for short-term traffic prediction”, Transportation Research Record: Journal of the Transportation Research Board, Vol.1879, pp.1-8, 2004.
[47] J. Yang.,“A Study of Travel Time Modeling Via Time Series Analysis”, IEEE Conference on Control Applications, pp.855-860, Toronto, Canada, 2005.
[48] X. Zhang, J.Rice,“Short-term Travel Time Prediction”. Transportation Research Part C, Vol.11, Issue.3-4, pp.187-210, 2003.
[49] Y. Zhang, Y. Liu,“Comparison of Parametric and Nonparametric Techniques for Non-peak Traffic Forecasting”, World Academic of Science and Engineering Technology, Vol.51, 2009. [50] M. Zhong, S. Sharma, P. Lingras,“Analyzing the performance of genetically designed short-term traffic prediction models based on road types and functional classes”, Lecture Notes in Computer Science, Vol.3029, pp.1133-1145, 2004.