Impact of Cadmium on root growth and ascorbate peroxidase activity (APX) and catalase activity (CAT) in wheat (Triticum aestivum)
Subject Areas : Stress Physiology
Safia SAHOUI
1
*
,
Yamina Boukerch
2
1 - Department of Biology, Faculty of Sciences of Nature and Life, University of Djelfa, city 05 Juillet, route Moudjbara, POBox 3117, 17000, Djelfa, Algeria
2 - Department of Biology, Faculty of Sciences of Nature and Life, University of Djelfa, city 05 Juillet, route Moudjbara, POBox 3117, 17000, Djelfa, Algeria
Keywords: Cadmium, Triticum aestivum, toxicity root, tolerance index, ascorbate peroxidase, catalase.,
Abstract :
Cadmium (Cd) is recognized as a major environmental pollutant that, upon absorption by plants, disrupts various physiological processes, leading to significant stress. This study investigates the effects of different Cd concentrations on root growth parameters and antioxidant enzyme activities in soft wheat (Triticum aestivum). Treatments with 50 and 100 mg/L Cd reduced root biomass by 28.70% and 30.91%, respectively, compared to the control. The Tolerance Index (TI) peaked at 80% under 50 mg/L Cd but declined to 50% at 100 mg/L, indicating moderate tolerance at lower Cd levels. Exposure to higher Cd concentrations (200 and 500 mg/L) resulted in biomass reductions of 95% and 80%, respectively, demonstrating severe toxicity. Antioxidant enzyme analysis revealed that ascorbate peroxidase (APX) activity was stimulated across all Cd treatments, while catalase (CAT) activity exhibited a non-linear response to increasing Cd concentrations. Overall, cadmium exposure negatively affected root development in wheat by impairing physiological mechanisms and inducing oxidative stress.
Aebi, H. 1974. Catalase. In Methods of enzymatic analysis. Academic press. pp :673-684.
Ai, H., D.Wu., C.Li and M. Hou, 2022. ̍Advances in molecular mechanisms underlying cadmium uptake and translocation in rice̒. Frontiers in Plant Science, 13 : 1003953.
Bouhraoua, S., M. Ferioun, A. Boussakouran, D. Belahcen, T. Benali, N. El Hachlafi, M. Akhazzane, A. Khabbach, K. Hammani and S. Louahlia. 2025. Physio-Biochemical Responses and Cadmium Partitioning Associated with Stress Tolerance in Hulless Barley Genotypes. Crops, 5, (2) 15.
Bradford, M. M, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(2): 248-254.
Buzduga, I. M., I.Salamon., R. A.Volkov and I.I. Pаnchuk, 2022. Rapid Accumulation of Cadmium and Antioxidative Response in Tobacco Leaves. The Open Agriculture Journal, 16(1).
Chieb, M. and E. W. Gachomo. 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC plant biology, 23, (1) 407.
Corpas, F. J., S. González-Gordo and J. M. Palma, 2024. Ascorbate peroxidase in fruits and modulation of its activity by reactive species. Journal of Experimental Botany, 75(9) :2716-2732.
Daud, M. K., S. Ali., M.T. Variath and S.J.Zhu, 2013. Differential physiological, ultramorphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere, 93(10) : 2593-2602.
El-Okkiah, S. A., A. M. El-Tahan, O. M. Ibrahim, M. A. Taha, S. M. Korany, E. A. Alsherif, H. Abdelgawad, E. Z. Abo Sen and M. A. Sharaf-Eldin. 2022. Under cadmium stress, silicon has a defensive effect on the morphology, physiology, and anatomy of pea (Pisum sativum L.) plants. Frontiers in Plant Science, 13, 997475.
Feng, K., J.Li., Y.Yang., Z. Li and W.Wu, 2023. Cadmium absorption in various genotypes of rice under cadmium stress. International Journal of Molecular Sciences, 24(9): 8019.
Gutiérrez-Martínez, P. B., M. I.Torres-Morán., M. C.Romero-Puertas., J.Casas-Solís., P.Zarazúa-Villaseñor., E.Sandoval-Pinto and B. C. Ramírez-Hernández, 2020. Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress. Biotecnia, 22(2) :110-118.
Haider, F. U., C. Liqun., J. A. Coulter., S. A. Cheema., J. Wu, R. Zhang and M. Farooq, 2021. ̍Cadmium toxicity in plants: Impacts and remediation strategies.̍ Ecotoxicology and environmental safety, 211 : 111887.
He, S. Y., X. E.Yang., Z. He and V. C. Baligar, 2017. Morphological and physiological responses of plants to cadmium toxicity : a review. Pedosphere, 27:421–438.
Hussain, B., M.J. Umer., J. Li., Y. Ma., Y. Abbas., M.N. Ashraf., N.Tahir., A. Ullah., N. Gogoi and M. Farooq, 2021. Strategies for reducing cadmium accumulation in rice grains. Journal of Cleaner Production, 286 :125557.
Idrees, S., S.Shabir., N.Ilyas., N.Batool., S. Kanwal, 2015. Assessment of cadmium on wheat (Triticum aestivum L.) in hydroponics medium. Agrociencia, 49(8) :917-929.
Imran, M., S.Hussain., M. A.El-Esawi., M. S. Rana, M. H.Saleem., M.Riaz and X. Tang, 2020. Molybdenum supply alleviates the cadmium toxicity in fragrant rice by modulating oxidative stress and antioxidant gene expression. Biomolecules, 10(11) :1582.
Jost JP, Jost-Tse YC. 2018. Les plantes hyperaccumulatrices de métaux lourds: une solution à la pollution des sols et de l'eau. (Eds).Publibook.
Kaur, M., N. Sidhu and M.S. Reddy, 2023. Removal of cadmium and arsenic from water through biomineralization. Environmental Monitoring and Assessment, 195(9) :10-19.
Li, S, 2023. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biology, 64 : 102789.
Loix, C., M.Huybrechts., J.Vangronsveld., M. Gielen., E. Keunen, , and A. Cuypers, 2017. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Frontiers in plant science, 8 :1867.
Malecka, A., A .Piechalak., A .Mensinger., A.Hanć., D. Baralkiewicz and B. Tomaszewska, 2012. Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Polish Journal 2:16.
Mansoor, S., A. Ali, N. Kour, J. Bornhorst, K. Alharbi, J. Rinklebe, D. Abd El Moneim, P. Ahmad and Y. S. Chung. 2023. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants, 12, (16) 3003.
Nakano Y and K. Asada, 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and cell physiology 28(1):131-40.
Nandi, A., L. J.Yan., C. K.Jana and N. Das, 2019. Role of catalase in oxidative stress‐and age‐associated degenerative diseases. Oxidative medicine and cellular longevity, (1) :9613090.
Rahoui, S., A.Chaoui and E. E. Ferjani, 2008. Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 30(4) :451-456.
Rashid, A., B. J. Schutte., A.Ulery., M. K Deyholos., S.Sanogo., E. A. Lehnhoff and L. Beck, 2023. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 13(6) :1521
Parrotta, L., G.Guerriero., K.Sergeant., G. Cai and J. F. Hausman, 2015. Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers in plant science, 6 : 133.
Rizwan, M., S. Ali., T. Abbas., M.Zia-ur-Rehman., F. Hannan., C. Keller and Y. S. Ok, 2016. Cadmium minimization in wheat: a critical review. Ecotoxicology and environmental safety, 130 : 43-53.
Rizwan, M., S.Ali., M. Z. U., Rehman and A. Maqbool, 2019. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research, 26 :6279-6289.
Saleh, S. R., M. M. Kandeel., D.Ghareeb.,T. M.Ghoneim., N. I.Talha., B.Alaoui-Sossé and M. M. Abdel-Daim, 2020. Wheat biological responses to stress caused by cadmium, nickel and lead. Science of The Total Environment, 706 : 136013.
Šípošová, K., E.Labancová., D.Hačkuličová., K. Kollárová and Z. Vivodová, 2023. The changes in the maize root cell walls after exogenous application of auxin in the presence of cadmium. Environmental Science and Pollution Research, 30(37) :87102-87117.
Aebi, H. 1974. Catalase. In Methods of enzymatic analysis. Academic press. pp :673-684.
Ai, H., D.Wu., C.Li and M. Hou, 2022. ̍Advances in molecular mechanisms underlying cadmium uptake and translocation in rice̒. Frontiers in Plant Science, 13 : 1003953.
Bouhraoua, S., M. Ferioun, A. Boussakouran, D. Belahcen, T. Benali, N. El Hachlafi, M. Akhazzane, A. Khabbach, K. Hammani and S. Louahlia. 2025. Physio-Biochemical Responses and Cadmium Partitioning Associated with Stress Tolerance in Hulless Barley Genotypes. Crops, 5, (2) 15.
Bradford, M. M, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(2): 248-254.
Buzduga, I. M., I.Salamon., R. A.Volkov and I.I. Pаnchuk, 2022. Rapid Accumulation of Cadmium and Antioxidative Response in Tobacco Leaves. The Open Agriculture Journal, 16(1).
Chieb, M. and E. W. Gachomo. 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC plant biology, 23, (1) 407.
Corpas, F. J., S. González-Gordo and J. M. Palma, 2024. Ascorbate peroxidase in fruits and modulation of its activity by reactive species. Journal of Experimental Botany, 75(9) :2716-2732.
Daud, M. K., S. Ali., M.T. Variath and S.J.Zhu, 2013. Differential physiological, ultramorphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere, 93(10) : 2593-2602.
El-Okkiah, S. A., A. M. El-Tahan, O. M. Ibrahim, M. A. Taha, S. M. Korany, E. A. Alsherif, H. Abdelgawad, E. Z. Abo Sen and M. A. Sharaf-Eldin. 2022. Under cadmium stress, silicon has a defensive effect on the morphology, physiology, and anatomy of pea (Pisum sativum L.) plants. Frontiers in Plant Science, 13, 997475.
Feng, K., J.Li., Y.Yang., Z. Li and W.Wu, 2023. Cadmium absorption in various genotypes of rice under cadmium stress. International Journal of Molecular Sciences, 24(9): 8019.
Gutiérrez-Martínez, P. B., M. I.Torres-Morán., M. C.Romero-Puertas., J.Casas-Solís., P.Zarazúa-Villaseñor., E.Sandoval-Pinto and B. C. Ramírez-Hernández, 2020. Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress. Biotecnia, 22(2) :110-118.
Haider, F. U., C. Liqun., J. A. Coulter., S. A. Cheema., J. Wu, R. Zhang and M. Farooq, 2021. ̍Cadmium toxicity in plants: Impacts and remediation strategies.̍ Ecotoxicology and environmental safety, 211 : 111887.
He, S. Y., X. E.Yang., Z. He and V. C. Baligar, 2017. Morphological and physiological responses of plants to cadmium toxicity : a review. Pedosphere, 27:421–438.
Hussain, B., M.J. Umer., J. Li., Y. Ma., Y. Abbas., M.N. Ashraf., N.Tahir., A. Ullah., N. Gogoi and M. Farooq, 2021. Strategies for reducing cadmium accumulation in rice grains. Journal of Cleaner Production, 286 :125557.
Idrees, S., S.Shabir., N.Ilyas., N.Batool., S. Kanwal, 2015. Assessment of cadmium on wheat (Triticum aestivum L.) in hydroponics medium. Agrociencia, 49(8) :917-929.
Imran, M., S.Hussain., M. A.El-Esawi., M. S. Rana, M. H.Saleem., M.Riaz and X. Tang, 2020. Molybdenum supply alleviates the cadmium toxicity in fragrant rice by modulating oxidative stress and antioxidant gene expression. Biomolecules, 10(11) :1582.
Jost JP, Jost-Tse YC. 2018. Les plantes hyperaccumulatrices de métaux lourds: une solution à la pollution des sols et de l'eau. (Eds).Publibook.
Kaur, M., N. Sidhu and M.S. Reddy, 2023. Removal of cadmium and arsenic from water through biomineralization. Environmental Monitoring and Assessment, 195(9) :10-19.
Li, S, 2023. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biology, 64 : 102789.
Loix, C., M.Huybrechts., J.Vangronsveld., M. Gielen., E. Keunen, , and A. Cuypers, 2017. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Frontiers in plant science, 8 :1867.
Malecka, A., A .Piechalak., A .Mensinger., A.Hanć., D. Baralkiewicz and B. Tomaszewska, 2012. Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Polish Journal 2:16.
Mansoor, S., A. Ali, N. Kour, J. Bornhorst, K. Alharbi, J. Rinklebe, D. Abd El Moneim, P. Ahmad and Y. S. Chung. 2023. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants, 12, (16) 3003.
Nakano Y and K. Asada, 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and cell physiology 28(1):131-40.
Nandi, A., L. J.Yan., C. K.Jana and N. Das, 2019. Role of catalase in oxidative stress‐and age‐associated degenerative diseases. Oxidative medicine and cellular longevity, (1) :9613090.
Rahoui, S., A.Chaoui and E. E. Ferjani, 2008. Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 30(4) :451-456.
Rashid, A., B. J. Schutte., A.Ulery., M. K Deyholos., S.Sanogo., E. A. Lehnhoff and L. Beck, 2023. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 13(6) :1521
Parrotta, L., G.Guerriero., K.Sergeant., G. Cai and J. F. Hausman, 2015. Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers in plant science, 6 : 133.
Rizwan, M., S. Ali., T. Abbas., M.Zia-ur-Rehman., F. Hannan., C. Keller and Y. S. Ok, 2016. Cadmium minimization in wheat: a critical review. Ecotoxicology and environmental safety, 130 : 43-53.
Rizwan, M., S.Ali., M. Z. U., Rehman and A. Maqbool, 2019. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research, 26 :6279-6289.
Saleh, S. R., M. M. Kandeel., D.Ghareeb.,T. M.Ghoneim., N. I.Talha., B.Alaoui-Sossé and M. M. Abdel-Daim, 2020. Wheat biological responses to stress caused by cadmium, nickel and lead. Science of The Total Environment, 706 : 136013.
Šípošová, K., E.Labancová., D.Hačkuličová., K. Kollárová and Z. Vivodová, 2023. The changes in the maize root cell walls after exogenous application of auxin in the presence of cadmium. Environmental Science and Pollution Research, 30(37) :87102-87117.
Shafi, A., R.Chauhan., T. Gill., M. K. Swarnkar., Y. Sreenivasulu., S. Kumar and A. K. Singh, 2015. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology, 87 :615-631.
Soni,S., A.B.Jha., R.S. Dubey and P. Sharma., 2023. Mitigating cadmium accumulation and toxicity in plants.The promising role of nanoparticles. The Science of the Total Environment.912:168826.
Srivashtav, V., D. Verma., R. Kansara, and A. Singh, 2024. Effect of cadmium toxicity on growth, physiochemical parameters and antioxidant system of castor seedlings. Heliyon, 10(16).
Sterckeman, T and S. Thomine, 2020. ` Mechanisms of cadmium accumulation in plants .̍ Critical Reviews in Plant Sciences, 39(4) :322-359.
Wang, J., Zhang, H., T. Zhang., R. Zhang., R. Liu and Y. Chen, 2015. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. International journal of biological macromolecules, 77 :59-67.
Xu, X., C. Liu., X. Zhao., R. Li and W. Deng, 2014. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L) . Bulletin of environmental contamination and toxicology, 93 : 618-624.
Zhang, J., S. Zheng., S. Wang., Q. Liu, and S. Xu, 2020. Cadmium-induced oxidative stress promotes apoptosis and necrosis through the regulation of the miR-216a-PI3K/AKT axis in common carp lymphocytes and antagonized by selenium. Chemosphere, 258 :127341. 165.