Exogenous application of selenium on growth and antioxidant capacity of Pisum sativum L. under cadmium stress
Subject Areas : PhytochemistryRiti Thapar Kapoor 1 , Mozhgan Farzami Sepehr 2
1 - Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida - 201 313, India
2 - Department of Plant Biology, Faculty of Agriculture, Saveh Branch, Islamic Azad University, Saveh, Iran
Keywords: growth, Cadmium, sodium selenate, Pisum sativum,
Abstract :
Heavy metals pose a serious threat to environment and show adverse effects on plants, animals, and human health. Cadmium is one of the highly persistent toxic metals present in agricultural fields due to its excessive release through industrial and anthropogenic activities. The present paper deals with the effect of sodium selenate on the growth and physiological parameters of Pisum sativum L. grown under cadmium stress. The application of sodium selenate significantly enhanced root and shoot length, biomass, and physiological attributes such as chlorophyll, sugar, proline, protein, and total antioxidant contents in pea plants, protecting them against cadmium toxicity. The highest total antioxidant content (54%) was reported in Cd (20 mM) + SS (5 μM) treatment. Hence, the application of sodium selenate can be used as plant growth promoter for the growth of pea plants under cadmium stress.
Abbas, T., M. Rizwan, S. Ali, M. Adrees, M., Zia-ur-Rehman, M. F. Qayyum, Y.S. Ok, and G. Murtaza. 2017. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science Pollution Research, 25: 25668-25680.
Annunziata, M.G., L.F. Ciarmiello, P. Woodrow, E. Dell’ Aversana, and P. Carillo. 2019. Spacial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Frontiers in Plant Science, 10: 230.
Alves, L. R., D.R. Rossatto, M.L. Rossi, A.P. Martinelli, and P.L. Gratao. 2020. Selenium improves photosynthesis and induces ultrastructural changes but does not alleviate cadmium-stress damages in tomato plants. Protoplasma, 257, 597–605
Alyemeni, M.N., M.A. Ahanger, L. Wijaya, P. Alam, R. Bhardwaj, and P. Ahmad. 2018. Selenium mitigates cadmium -induced oxidative stress in tomato (Solanum lycopercicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation and antioxidant system. Protoplasma, 255, 985-986.
Atteya, A.K.G. and H.M. Amer, 2018. Influence of seaweed extract and amino acids on growth, productivity and chemical constituents of Hibiscus sabdariffa L. plants. Bioscience Research, 15: 772–791.
Atteya, A.K.G., R.S. El-Serafy., K.M. El-Zabalawy., A. Elhakem, E.A.E. Genaidy. 2022. Exogenously supplemented proline and phenylalanine improve growth, productivity, and oil composition of salted moringa by up-regulating osmoprotectants and stimulating antioxidant machinery. Plants, 11, 1553.
Balakhnina, T. I., and E.S. Nadezhkina. 2017. Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russian Journal of Plant Physiology, 64: 215–223
Barrs, H.D., and P.E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15:413-428.
Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
Bojorquez, C., M.G. Frias-Espericueta, D. Voltolina, 2016. Removal of cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter cloacae. Revista Internacional de Contaminacion Ambiental, 32: 407-412.
Bruno,L., M. Pacenza, I. Forgione, L.R. Lamerton, M. Greco, A. Chiappetta, M.B.
Bitonti. 2017. In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SCR expression and auxin-cytokinin cross-talk. Frontiers in Plant Science, 8: 1323.
Chao,W., S. Rao, Q. Chen, W. Zhang, Y. Liao, J. Ye, S. Cheng, X. Yang, F. Xu, 2022. Advances in research on the involvement of selenium in regulating plant ecosystems. Plants, 11: 2712.
Chellaiah, E.R. 2018. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a mini-review. Appl. Water Sci. 8, 154.
Dai, H., S. Wei, L. Skuza, and G. Jia. 2019. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation. Ecotoxicology and Environmental Safety, 180: 179-184.
Feng, R., L. Wang, J. Yang, P. Zhao, Y. Zhu, Y. Li, Y. Yu, H. Liu, C. Rensing, Z. Wu, R. Ni, and S. Zheng. 2020. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. Journal of Hazardous Materials, 402, 23570.
Gao, M., J. Zhou, H. Liu, W. Zhang, Y. Hu, J. Liang, and J. Zhou. 2018. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of the Total Environment, 631: 1100-1108.
Gavrilescu, M. 2022. Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology, 74:21-31.
Gupta,M., and Gupta, S. 2017. An overview of seleniumuptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7:2074.
Haghighi, M., A. Sheibanirad, and M. Pessarakli. 2016. Effects of selenium as a beneficial element on growth and photosynthetic attributes of greenhouse cucumber. Journal of Plant Nutrition, 39(10): 1493–1498.
Haider, F.U., L. Cai, J.A. Coulter, S.A. Cheema, J. Wu, R. Zhang, M. Wenjun, M. Farooq. 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887.
Handa, N., S.K. Kohli, A. Sharma, A. K. Thukral, R. Bhardwaj, E.F. Abdallah, A. A. Alqarawi, P. Ahmad. 2019. Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environmental and Experimental Botany, 161: 180–192.
Hasanuzzaman, M., M.B. Bhuyan, A. Raza, B. Hawrylak-Nowak, R. Matraszek- Gawron, J.A. Mahmud, K. Nahar, M. Fujita. 2020. Selenium in plants: Boon or bane? Environmental and Experimental Botany, 178: 104170.
Hasanuzzaman, M., K. Nahar, P. García-Caparrós, K. Parvin, F. Zulfiqar, N. Ahmed, and M. Fujita. 2022. Selenium supplementation and crop plant tolerance to metal/metalloid toxicity. Frontiers in Plant Science, 12:792770.
Hawrylak-Nowak, B., S. Dresler, and M. Wójcik. 2014. Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Scientia Horticulturae, 172:10–18.
Hedge, J.E., and B.T. Hofreiter. 1962. Estimation of carbohydrate. In Whistler, R.L.and Be Miller, J.N. (Ed.), Methods in carbohydrate chemistry. Academic Press, New York, pp. 17-22.
Hoagland, D.R., and D.J. Arnon. 1959. The water-culture method of growing plants without soil. California Agricultural Experiment Station, Circular, 347:26-29.
Hussain, B., M.N. Ashraf, S.U. Rahman, A. Abbas, J. Lia, M. Farooq. 2021. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of the Total Environment, 754, 142188.
Irmak, S. 2017. Effects of selenium application on plant growth and some quality parameters in peanut (Arachis hypogaea). Pakistan Journal of Biological Sciences, 20(2):92-99.
Islam, E., D. Liu, T.Q. Li, X. Yang, X. F. Jin, Q. Mahmooda, S. Tian, and J.Y. Li. 2008. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 154 (1-3): 914-926.
ISTA. 2008. International rules for seed testing. international seed testing association. ISTA Secretariat, Switzerland.
Khalofah, A., H. Migdadi, and E. El-Harty. 2021. Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa Willd.) to exogenous selenium application. Plants, 10, 719.
Kubier, A., R.T. Wilkin, T. Pichler. 2019. Cadmium in soils and groundwater: a review. Applied Geochemistry, 108, 104388.
Kumari, T., and Deka, S.C. 2021. Potential health benefits of garden pea seeds and pods: A review. Legume Science, 3:e82.
Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. In: Methods Enzymology. Packer L.,Douce R., (Eds.), Academic Press, Sandiego. pp. 350-382.
Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall, 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193:265-275.
Missana,T., U. Alonso, and M. García-Gutiérrez. 2009. Experimental study and modelling of selenite sorption onto illite and smectite clays. Journal of Colloid Interface Science, 334: 132-138.
Mozafariyan, M., L. Shekari, B. Hawrylak-Nowak, and M.M. Kamelmanesh. 2014. Protective role of selenium on pepper exposed to cadmium stress during reproductive stage. Biological Trace Element Research, 160: 97-107.
Naseem, M., M. Anwar-ul-Haq, X. Wang, N. Farooq, M. Awais, H. Sattar, H. A. Malik, A. Mustafa, J. Ahmad, and M. A. El-Esawi. 2021. Influence of selenium on growth, physiology, and antioxidant responses in maize varies in a dose-dependent manner. Hindawi Journal of Food Quality, 2021, Article ID 6642018, 1-9.
Pandey, C., and M. Gupta. 2015. Selenium and auxin mitigate arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assays. Journal of Hazardous Materials, 287: 384-391.
Pandey, C., and M. Gupta. 2018. Selenium amelioration of arsenic toxicity in rice shows genotypic variation: a transcriptomic and biochemical analysis. Journal of Plant Physiology, 231: 168-181.
Pinto, S.S., A.E. Souza, M.A. Oliva, and E.G. Pereira. 2016. Oxidative damage and photosynthetic impairment in tropical rice cultivars upon exposure to excess iron. Scientia Agricola, 73: 217-226.
Prieto, P., M. Pineda, and M, Aguilar. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to determination of vitamin E. Analytical Biochemistry, 269: 337-341.
Proietti, P., L. Nasinia, D. del Buonoa, R. D’amatoa, E. Tedeschinib, and D. Businellia. 2013. Selenium protects olive (Olea europaea L.) from drought stress. Scientia Horticulturae, 164: 165-171.
Qin, S., H. Liu, Z. Nie, Z. Rengel, W. Gao, C. Li, P. Zhao. 2020. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 30:168-180.
Riaz, M., M. Kamran, M. Rizwan, S. Ali, A. Parveen, Z. Malik, X. Wang. 2021. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 273: 129690.
Rizwan, M., S. Ali, T. Abbas, M.Z. Rehman, F. Hannan, C. Keller, M.I. Al-Wabel, Y.S. Ok. 2016. Cadmium minimization in wheat: a critical review. Ecotoxicology and Environmental Safety, 130: 43-53.
Sairam, R.K., P.S. Deshmukh, and D. S. Shukla. 1997. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science, 178: 171-178.
Shahid, M.A., R.M. Balal, N. Khan, L. Zotarelli, G.D. Liu, A. Sarkhosh, J.C. Fernández-Zapata, J.J. Martínez Nicolás, and F. Garcia-Sanchez. 2019. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicology and Environmental Safety, 180: 588-599.
Silva, V. M., E.H. M. Boleta, M.G. D.B. Lanza, J. Lavres, J. T. Martins, E.F. Santos, F.L.M. Santos, F.F. Putti, E. F. Junior, P.J. White, M.R. Broadley, H.W. P. de Carvalho, A.R. dosReis. 2018. Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environmental and Experimental Botany, 150: 172-182.
Terry, N., A. M. Zayed, M.P. deSouza, and A.S. Tarun. 2000. Selenium in greater plants. Annual Review of Plant Physiology, 51: 401-432.
Tran, T. A. T., F. Zhou, W. Yang, M. Wang, Q.T. Dinh, D. Wang, D. Liang. 2018. Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicology and Environmental Safety, 159: 77-84.
Ulhassan, Z., R.A. Gill, H. Huang, S. Ali, T.M. Mwamba, B. Ali, Q. Huang, Y. Hamid, A.R. Khan, J. Wang, and W. Zhou. 2019. Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiology and Biochemistry, 145: 142-152.
Wang, Q.Q., S.C. Yu, C.D. Xu, J.J. Liu, Y.Q. Li, M.H. Zhang, X.J. Long, Y.N. Liu, Y.F. Bi, W.H. Zhao, H.Y. Yao. 2020. Association between selenium in soil and diabetes in chinese residents aged 35-74 years: results from the 2010 national survey of chronic diseases and behavioral risk factors surveillance. Biomedical and Environmental Sciences, 33: 260-268.
Wang, C., T. Cheng, H. Liu, F. Zhou, J. Zhang, M. Zhang, X. Liu, W. Shi, T. Cao. 2021. Nano selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. Journal of Environmental Sciences, 103: 336–346.
Wu, Z., G.S. Banuelos, Z.Q. Lin, Y. Liu, L. Yuan, X. Yin, M. Li. 2015. Biofortification and phytoremediation of selenium in China. Frontiers in Plant Science, 6, 136.
Wu, C., Y. Dun, Z. Zhang, M. Li, G. Wu. 2020. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 190: 110091.
Xu, Z.M., Q.S. Li, P. Yang, H.J. Ye, Z.S. Chen, S.H. Guo, L.L. Wang, B.Y. He, E. Y. Zeng. 2017. Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils. Environmental Pollution, 224: 89-97.
Zhao, Y., C. Hu, X. Wang, X. Qing, P. Wang, Y. Zhang, X. Zhang, X. Zhao. 2019. Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. sp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicology and Environmental Safety, 173: 314-321
Zhou, J., Z. Jiang, J. Ma, L. Yang, and Y. Wei. 2017. The effects of lead stress on photosynthetic function and chloroplast ultrastructure of Robinia pseudoacacia seedlings. Environmental Science and Pollution Research, 24: 10718-10726.
Zhou, J., C. Zhang, B. Du, H. Cui, X. Fan, D. Zhou, J. Zhou. 2021. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties. Journal of Hazardous Materials, 402, 123546.
Zulfiqar, U., M. Farooq, S. Hussain, M. Maqsood, M. Hussain, M. Ishfaq, M. Ahmad, M. Z. Anjum. 2019. Lead toxicity in plants: impacts and remediation. Journal of Environmental Management, 250, 109557.