PREDICTION OF BITCOIN PRICES BASED ON BLOCKCHAIN INFORMATION: A DEEP REINFORCEMENT LEARNING APPROACH
Subject Areas : International BusinessKhadija Mnasri 1 , Fahmi Ben Rejab 2 , Syrine Ben Romdhane 3 *
1 - University of Lorraine
2 - Higher Institute of Management of Tunisia
3 - La soukra
Keywords: Bitcoin price prediction, Blockchain information, Deep Reinforcement Learning, CNN-LSTM, Deep Autoencoders.,
Abstract :
Bitcoin, the first decentralized cryptocurrency, has attracted significant attention from investors and researchers alike due to its volatile and unpredictable price movements. However, predicting the price of Bitcoin remains a challenging task. This paper presents a detailed literature review on previous studies that have attempted to predict the price of Bitcoin. It discusses the main drivers of Bitcoin prices, including its attractiveness, macroeconomic and financial factors with a particular focus on the use of Blockchain information. In this study, we apply time series to daily data for the period from 28/04/2013 to 28/01/2023. We used Python and TensorFlow library version 2.11.0 and propose a deep multimodal reinforcement learning policy combining convolutional neural network (CNN) and long short-term memory (LSTM) neural network for cryptocurrencies’ prices prediction. Also, this study attempts to predict the price of Bitcoin using a special type of deep neural networks, a Deep Autoencoders. By providing more reliable and attractive models for predicting the price of Bitcoin, these approaches are expected to provide a more robust understanding of the factors driving Bitcoin prices. Two results are worth noting: Autoencoders turns out to be the best method of predicting Bitcoin prices, and Bitcoin-specific Blockchain information is the most important variable in predicting Bitcoin prices. This study highlights the potential utility of incorporating Blockchain factors in price prediction models.