A New Approach to $n$-Ary Dynamical Hypersystem
Subject Areas : International Journal of Industrial Mathematicsاکبر دهقان نژاد 1 * , نویده صادری 2
1 - School of Mathematics,
Iran University of Science and Technology, Tehran, Iran.
2 - Department of Mathematics, Yazd University, Yazd, Iran.
Keywords: Action group, hypergroup, $n$-Ary dynamical hypersystem, Universal n-ary hyperalgebra, Hyperstructure,
Abstract :
The primary aim of this paper is to investigate useful generalizations of the classical concept of action of a hyperstructure on a non-empty set. The main goal is to develop the theory of dynamical system to the theory of $n$-ary dynamical hypersystem. We also give some principal properties of an $n$-ary dynamical hypersystem.
[1] P. Bonansinga, P. corsini, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci. 2 (1983) 307-312.
[2] Jan Chavalina, Commutative hypergroups in the sense of Marty, Proceeding of the Summer School, (1994), Horni Lipova, 19-30, Czech Republic.
[3] Jan Chvalina, S. H. Mayerova, A. D. Nezhad, General actions of hyperstructures and some applications, An. St. Univ. Ovidius Constanta 21 (2013) 59-82.
[4] S. D. Comer, Combinatorial aspects of relations, Algebra Universalis, 1993.
[5] S. D. Comer, Extension of polygroups by polygroups and their representations using colour schemes, Lecture notes in Math., No 1004, Univattice Theory 12 (1982) 91-103.
[6] S. D. Comer, Hyperstructures associated with character algebra and colour schemes, New Frontiers in Hyperstructures, Hadronic Press 32 (1996) 49-66.
[7] S. D. Comer, Polygroups derived from cogroups, Journal of Algebra 89 (1994) 12-23.
[8] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani Editor, 1993.
[9] P. Corsini, V. Leoreanu, Applications of hyperstructures theory, Advances in Mathematics, Kluwer Academic Publishers, 2003.
[10] B. Davvaz, Elementary topics on weak polygroups, Bull. Korean Math. Soc. 40 (2003) 418-431.
[11] B. Davvaz, Isomorphism Theorems of Polygroups, Bull. Malays. Math. Sci. Soc. 33 (2010) 385-392.
[12] B. Davvaz, Polygroup Theory and Related Systems, Department of Mathematics, Yazd University, Yazd, Iran.
[13] B. Davvaz, A. Dehghan Nezhad, Chemical examples in hypergroups, Ratio Mathematica 14 (2003) 71-74.
[14] B. Davvaz, A. Dehghan Nezhad, A. Benvidi, Chain reactions as experimental examples of ternary algebraic hyperstructures, Communications in Mathematical and in Computer Chemistry 65 (2011) 491-499.
[15] B. Davvaz, A. Dehghan Nezhad, A. Benvidi, Chemical hyperalgebra: Dismutations, Communications in Mathematical and in Computer Chemistry, (2011).
[16] B. Davvaz, Wieslaw A. Dudek, Thomas Vougiouklis, A generalization of n-ary algebraic systems, Communications in Algebra 37 (2009) 1248-1263.
[17] B. Davvaz, T. Vougiouklis, n-Ary hypergroups, Iran. J. Sci. Technol. 30 (2006) 165-174.
[18] A. Dehghan Nezhad, B. Davvaz, Universal hyperdynamical systems, Bull. Korean Math. Soc. 3 (2010) 513-526.
[19] Robert L. Denaney, An Introduction to Chaotic Dynamical Systems, Department of Mathematics, Boston University, AddisonWesley Publishing Company, 1989.
[20] A. Wieslaw Dudek, V. Vladimir Mukhin, On topological n-ary semigroups, Quasigroups and related systems 3 (1996) 73-88.
[21] M. Ghadiri, B. N. Waphare, n-ary polygroups, Iran J. Sci. Technol. Trans. A 33 (2009) 11-33.
[22] G. Gratzer, A representation theorem for multi-algebras, Arch. Math. 3 (1962) 452-456.
[23] G. E. Hansoul, A subdirect decomposition theorem for multialgebras, Algebra universalis 16 (1983) 274-281.
[24] H. Hoft, P. E. Howard, Representing multialgebras by algebras, the axiom of choice, and the axiom of dependent choice, Algebra Universalis 13 (1981) 69-77.
[25] Rabah Kellil, Ferdaous Kellil, A brief introduction to topological hypergroup, Sci. Int. (Lahore) 27 (2015) 3957-3959.
[26] John M. Lee, Introduction to Smooth Manifolds, Springer, New York, New York, 2012.
[27] V. Leoreanu-Fotea, B. Davvaz, nhypergroups and binary relations, European J. Combinatorics 29 (2008) 1207-1218.
[28] V. Leoreanu-Fotea, B. Davvaz, Roughness in n-ary hypergroups, Inform. Sci. 178 (2008) 4114-4124.
[29] V. Leoreanu-Fotea B. Davvaz, nhypergroups and binary relations, European J. Combin. 29 (2008) 1207-1218.
[30] A. Madanshekaf, A. R. Ashrafi, Generalized action of a hypergroup on a set, Italian J. Pure and Appl. math. 3 (1998) 127-135.
[31] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm 12 (1934) 45-49.
[32] J. R. Munkres, Topology, second edition, Prentice Hall, NJ, 2000.
[33] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc, 115, Palm Harber, USA, 1994.
[34] T. Vougiouklis, A new class of hyperstructures, J. Comb.nf. Syst. Sci. 20 (1995) 229-235.
[35] J. Zhan, S. Sh. Mousavi, M. Jafarpour, On hyperaction of hypergroups, U. P. B. Sci. Bull., Series A. 73 (2011) 117-128.