A New Approach for Solving Fully Fuzzy Bilevel Linear Programming Problems
Subject Areas : International Journal of Industrial MathematicsS. F. Tayebnasab 1 , F. Hamidi 2 * , M. Allahdadi 3
1 - Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
2 - Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
3 - Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
Keywords: Triangular fuzzy numbers, Bilevel linear programming, Optimal solution, Unconstrain variables, Ranking function,
Abstract :
This paper addresses a type of fully fuzzy bilevel linear programming (FFBLP) wherein all the coefficients and decision variables in both the objective function and constraints are triangular fuzzy numbers. This paper proposes a new simple-structured, efficient method for FFBLP problems based on crisp bilevel programming that yields fuzzy optimal solutions with unconstraint variables and parameters. some examples have been provided to illustrate these methods.
[1] T. Allahviranloo, F. H. Lotfi, M. K. Kiasary, N. A. Kiani, L. Alizadeh, Solving fully fuzzy linear programming problem by the ranking function, Applied Mathematical Sciences 2 (2008) 19-32.
[2] R. E. Bellman, L. A. Zadeh, Decision Making in A Fuzzy Environment, Management Science 17 (1970) 141-164.
[3] M. Cecchini, J. Ecker, M. Kupferschmid, R. Leitch, Solving nonlinear principal-agent problems using bilevel programming, Eur. J. Oper. Res. 230 (2013) 364-373.
[4] S. Dempe, Foundations of bilevel programming, Kluwer, Dordrecht, 2002.
[5] S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization 52 (2003) 333-359.
[6] S. Dempe, V. Kalashnikov, G. A. PrezValds, N. Kalashnykova, Bilevel programming problems, Springer, Berlin, 2015.
[7] F. Hosseinzadeh Lotfi, T. Allahviranloo, M. Alimardani Jondabeh, L. Alizadeh, Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution, Applied Mathematical Modelling 33
(2009) 3151-3156.
[8] V. V. Kalashnikov, S. Dempe, G. A. PrezValds, N. I. Kalashnykova, J. F. CamachoVallejo, Bilevel programming and applications, Mathematical Problems in Engineering (2015) http://dx.doi.org/10.1155/
2015/310301/.
[9] J. Kaur, A. Kumar, Exact fuzzy optimal solution of fully fuzzy linear programming problems with unrestricted fuzzy variables,Appl. Intell. 37 (2012) 145-154.
[10] A. Kumar, J. Kaur, P. Singh, A new method for solving fully fuzzy linear programming problems, Applied Mathematical Modelling 35 (2011) 817-823.
[11] M. Labb , A. Violin, Bilevel programming and price setting problems, 4OR-Q J. Oper. Res. 11 (2013) 1-30.
[12] H. S. Najafi, S. A. Edalatpanah, A note on A new method for solving fully fuzzy linear programming problems, Appl. Math. Model. 37 (2013) 7865-7867.
[13] ] A. Ren, A Novel Method for Solving the Fully Fuzzy Bilevel Linear Programming Problem, Mathematical Problems in Engineering (2015) http://dx.doi.org/10.1155/2015/280380/.
[14] A. Ren, Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method, Mathematical Problems in Engineering (2016) http://dx.doi.org/10.1155/2016/7069804/.
[15] A. Ren, Y. Wang, X. Xue, Interactive programming approach for solving the fully fuzzy bilevel linear programming problem, Knowledge-Based Systems 99 (2016) 103-111.
[16] A. Ruziyeva, Fuzzy bilevel optimization [Ph.D. thesis], Freiberg,Technical University Bergakademie (2013).
[17] N. Safaei, M. Saraj, A new method for solving fully fuzzy linear bilevel programming problems, International Journal of Applied Operational Research 4 (2014) 51-58.
[18] M. Sakawa, I. Nishizaki, Y. Uemura, Interactive fuzzy programming for multilevel linear programming problems with fuzzy parameters, Fuzzy Set Syst. 109 (2000) 3-19.
[19] J. Xu, P. A. Wei, Bilevel model for locationallocation problem of construction and demolition waste management under fuzzy random environment, Int. J. of Civ. Eng. 10 (2012) 1-12.
[20] M. W. Xu, J. J. Ye, A smoothing augmented Lagrangian method for solving simple bilevel programs, Comput. Optim. Appl. 59 (2014) 353-377.
[21] R. R. Yager, A procedure for ordering fuzzy numbers of the unit interval, Information Sciences 24 (1981) 143-161.
[22] G. Zhang, G. Zhang, Y. Gao , J. Lu, Competitive strategic bidding optimization in electricity markets using bilevel programming and swarm technique, IEEE Transactions on Industrial Electronics 58 (2011) 2138-2146.
[23] G. Zhang, J. Lu, T. Dillon, Fuzzy linear bilevel optimization: solution concepts, approaches and applications, In: P. P. Wang, D. Ruan, E. E. Kerre (eds) Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol 215. Springer, Berlin, Heidelberg (2007) 351- 379.