Efficient synthesis of arylaminotetrazoles as via [2+3] cycloaddition of nitriles and sodium azide via solid acid catalysis
Subject Areas :Abbas Teimouri 1 , Alireza Najafi Chermahini 2
1 - Payame Noor University (PNU), Isfahan, Iran
2 - Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
Keywords: zeolite, Sulfated Zirconia, Green synthesis, arylaminotetrazoles,
Abstract :
The [3+2] cycloaddition between various nitriles and sodium azide proceeds smoothly in the presence of zeolite and sulfated Zircona as effective catalyst and in the water and DMF/MeOH, to give the corresponding arylaminotetrazoles in good to high yields. The reaction most probably precedes through the in situ formation of a catalyst azide species, followed by a successive [3+2] cycloaddition with the nitriles. This method has the advantages of high yields, simple methodology,and easy work-up. The catalyst can be recovered by simple filtration and reused in good yields.
[1] H. R. Meier, H. Heimgartner, In Methoden der Organischen Chemie (Houben-Weyl); Schumann, E., Ed.; Georg Thieme: Stuttgart, 1994; Vol. E8d, p 664.
[2] Bulter, R. N.. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: New York, 1996; Vol. 4, p 621.
[3] R. Herr, J. Bioorg. Med. Chem. 10 (2002) 3379.
[4] G. F. Holland, J. N. Pereira, J. Med. Chem. 10 (1967) 149.
[5] L. A. Flippin, Tetrahedron Lett. 32 (1991) 6857.
[6] P. Rhonnstad, D. Wensbo, Tetrahedron Lett. (43) 2002 3137.
[7] F. Ek, L.-G. Wistrand, T. Frejd, Tetrahedron. 59 (2003) 6759.
[8] M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. S. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford, G. E. Zurenko, J. C. Hamel, R. D. Schaadt, D. Stapert, B. H. Yagi, J. Med. Chem. 43 (2000) 953.
[9] D. M. Zimmerman, R. A. Olofson, Tetrahedron Lett. 58 (1969) 5081.
[10] D. P. Curran, S. Hadida, S. Y. Kim, Tetrahedron. 55 (1999) 8997.
[11] J. V. Duncia, M. E. Pierce, J. B. Santella, J. Org. Chem. 56 (1991) 2395.
[12] S. J. Wittenberger, B. G. Donner, J. Org. Chem. 58 (1993) 4139.
[13] (a) Z. P. Demko, K. B. Sharpless, J. Org. Chem. 66 (2001) 7945; (b) M. L. Kantam, K. B. Shiva Kumar, Phani K. Raja, J. Mol. Catal. A: Chem. 247 (2006) 186.
[14] (a). M. F. V. Marques, S. C. Moreira, Journal of Molecular Catalysis A: Chemical, 192 (2003) 93; (b) H. Zhao, H. Ingelsten, M. Skoglundh, A. Palmqvist, Journal of Molecular Catalysis A: Chemical. 249 (2006) 13.
[15] (a) T. Okuhara, Chem. Rev. 102 (2002) 3641; (b) B. M. Reddy, M. K. Patil, K. N. Rao, G. K. Reddy, J. Mol. Catal. A: Chem. 258 (2006) 302; (c) B. M. Reddy, P. M. Sreekanth, V. R. Reddy, J. Mol. Catal. A: Chem. 225 (2005) 71.
[16] (a) H. A. Dabbagh, A. Najafi Chermahini, A. Teimouri, HZSM-5 and sulfated zirconia, Journal of Applied Catalysis B: Environmental. 76 (2007) 24. (b) A. Najafi Chermahini, A. Teimouri, F. Momenbeik, A. Zarei, Z. Dalirnasab, A. Ghaedi, M. Roosta, Journal of Heterocyclic Chemistry 47 (2010) 913.
[17] V. R. Choudhary, D. Panjala, S. Banerjee, Applied Catalysis A: General 231 (2002) 243.
[18] H. Armendariz, B. Coq, D. Tichit, R. Dutartre, F. Figueras, J. Catal. 173 (1998) 345.
[19] (a) A.N. Vorobiov, P.N. Gaponik, P.T. Petrov, Vestsi Nats. Akad. Navuk Belarusi, Ser. Khim. Navuk (2003) 50; (b) A.N. Vorobiov, P.N. Gaponik, P.T. Petrov, Chem. Abstr. 140 (2004) 16784g. [20] (a) M.S. Congreve, Synlett (1996) 359; (b) L.A. Flippin, Tetrahedron Lett. 32 (1991) 6857.