A review of the antibacterial properties of zinc oxide nanoparticles: synthesis, mechanism of action, and medical applications
Abolfazl Jafari Sales
1
(
Department of Microbiology, Kaz.C., Islamic Azad University, Kazerun, Iran
)
Zahra Ghahremani
2
(
Infectious Diseases Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
)
Aylin Golestani
3
(
Infectious Diseases Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
)
Mehrdad Pashazadeh
4
(
Infectious Diseases Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
)
Keywords: Zinc oxide, metal nanoparticles, multifunctional nanoparticles, reactive oxygen species, antibacterial agents,
Abstract :
Zinc oxide nanoparticles (ZnO-NPs) have emerged as one of the leading nanomaterials, demonstrating strong antimicrobial properties and high potential in controlling bacterial infections. ZnO-NPs exert their antibacterial effects through the generation of reactive oxygen species, damage to the cell membrane, and disruption of bacterial DNA and protein functions. Numerous studies have shown that these nanoparticles are effective against a wide range of Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains. The small size, high specific surface area, and ability to penetrate bacterial cell walls are key factors contributing to the efficacy of these nanoparticles. Furthermore, due to their minimal side effects on human cells and high biocompatibility, ZnO-NPs are considered a suitable option for clinical and industrial applications. The applications of these nanoparticles have been extensively reviewed, and potential strategies to enhance their efficiency and safety have been proposed. This study highlights the significant potential of ZnO-NPs to either replace or complement existing methods in combating bacterial infections, offering a novel approach to addressing antibiotic resistance and other challenges. This article reviews the antibacterial mechanisms of ZnO-NPs, examining factors influencing their activity and performance, and their potential applications in medical and industrial fields.
1. Kakhaki ZM, Youzbashi A, Naderi N. Optical properties of zinc oxide nanoparticles prepared by a one-step mechanochemical synthesis method. Journal of Physical Science. 2015;26(2):41–51.
2. Maruthupandy M, Anand M, Maduraiveeran G, Suresh S, Beevi ASH, Priya RJ. Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016;7(4):045011.
3. Goh E, Xu X, McCormick P. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Materialia. 2014;78:49-52.
4. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters. 2015;7:219-42.
5. Pulit-Prociak J, Chwastowski J, Bittencourt Rodrigues L, Banach M. Analysis of the physicochemical properties of antimicrobial compositions with zinc oxide nanoparticles. Science and Technology of Advanced Materials. 2019;20(1):1150-63.
6. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews. 2004;104(1):293-346.
7. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, et al. Applications and implications of nanotechnologies for the food sector. Food additives and contaminants. 2008;25(3):241-58.
8. Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat-Gadgil BS, Pandit A, et al. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Materials Science and Engineering: C. 2020;108:110319.
9. Siddiqi KS, Ur Rahman A, Tajuddin N, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters. 2018;13:141.
10. Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. A mini review of antibacterial properties of ZnO nanoparticles. Frontiers in Physics. 2021;9:641481.
11. Mendes CR, Dilarri G, Forsan CF, Sapata VdMR, Lopes PRM, de Moraes PB, et al. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports. 2022;12(1):2658.
12. Frederickson CJ, Koh J-Y, Bush AI. The neurobiology of zinc in health and disease. Nature Reviews Neuroscience. 2005;6(6):449-62.
13. Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in colloid and interface science. 2017;249:37-52.
14. Klug A, Rhodes D, editors. Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harbor symposia on quantitative biology; 1987: Cold Spring Harbor Laboratory Press.
15. Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal. 2014;2014(1):925494.
16. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics. 2005;98(4):041301.
17. Jang JS, Yu C-J, Choi SH, Ji SM, Kim ES, Lee JS. Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity. Journal of Catalysis. 2008;254(1):144-55.
18. Mahmud S, Johar Abdullah M, Putrus GA, Chong J, Karim Mohamad A. Nanostructure of ZnO fabricated via French process and its correlation to electrical properties of semiconducting varistors. Synthesis and Reactivity in Inorganic and Metal-Organic and Nano-Metal Chemistry. 2006;36(2):155-9.
19. Gandhi RR, Koche DK. An Insight of Zinc Oxide Nanoparticles (ZnO NPs): Green Synthesis, Characteristics and Agricultural Applications. Biosciences Biotechnology Research Asia. 2024;21(3):863-76.
20. Atapakala S, Sana SS, Kuppam B, Varma RS, Aly MAS, Kim S-C, et al. Honey mediated synthesis of zinc oxide nanoparticles, and evaluation of antimicrobial, antibiofilm activities against multidrug resistant clinical bacterial isolates. Journal of Industrial and Engineering Chemistry. 2024;135:110-21.
21. Guirguis HA, Youssef N, William M, Abdel-Dayem D, El-Sayed MM. Bioinspired Stevia rebaudiana Green Zinc Oxide Nanoparticles for the Adsorptive Removal of Antibiotics from Water. ACS omega. 2024;9(11):12881-95.
22. Song Z, Kelf TA, Sanchez WH, Roberts MS, Rička J, Frenz M, et al. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomedical optics express. 2011;2(12):3321-33.
23. Wang X, Ding Y, Summers CJ, Wang ZL. Large-scale synthesis of six-nanometer-wide ZnO nanobelts. The Journal of Physical Chemistry B. 2004;108(26):8773-7.
24. Elabbasy MT, El Bayomi RM, Abdelkarim EA, Hafez AE-SE, Othman MS, Ghoniem ME, et al. Antibacterial and Antibiofilm Activity of Green-Synthesized Zinc Oxide Nanoparticles Against Multidrug-Resistant Escherichia coli Isolated from Retail Fish. Molecules. 2025;30(4):768.
25. Agarwal H, Menon S, Kumar SV, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-biological interactions. 2018;286:60-70.
26. Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials. 2014;7(4):2833-81.
27. Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. Journal of Nanomaterials. 2017;2017:14.
28. Ju D, Xu H, Qiu Z, Guo J, Zhang J, Cao B. Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction. Sensors and Actuators B: Chemical. 2014;200:288-96.
29. Mclaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society. 2009;131(35):12540-1.
30. Aboulaich A, Balan L, Ghanbaja J, Medjahdi G, Merlin C, Schneider R. Aqueous route to biocompatible ZnSe: Mn/ZnO core/shell quantum dots using 1-thioglycerol as stabilizer. Chemistry of Materials. 2011;23(16):3706-13.
31. Nagvenkar AP, Deokar A, Perelshtein I, Gedanken A. A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent. Journal of Materials Chemistry B. 2016;4(12):2124-32.
32. Chandrasekaran P, Viruthagiri G, Srinivasan N. The effect of various capping agents on the surface modifications of sol–gel synthesised ZnO nanoparticles. Journal of Alloys and Compounds. 2012;540:89-93.
33. Fakhari S, Jamzad M, Kabiri Fard H. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews. 2019;12(1):19-24.
34. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM, da Silva Crespo J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable chemistry and pharmacy. 2020;15:100223.
35. Yusof HM, Rahman NAA, Mohamad R, Zaidan UH, Samsudin AA. Optimization of biosynthesis zinc oxide nanoparticles: Desirability-function based response surface methodology, physicochemical characteristics, and its antioxidant properties. OpenNano. 2022;8:100106.
36. Iqbal J, Abbasi BA, Yaseen T, Zahra SA, Shahbaz A, Shah SA, et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Scientific Reports. 2021;11(1):20988.
37. Chikkanna MM, Neelagund SE, Rajashekarappa KK. Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Applied Sciences. 2019;1:117.
38. Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results in Chemistry. 2024;7:101368.
39. Agarwal H, Kumar SV, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies. 2017;3(4):406-13.
40. Lahoti R, Carroll D. Green synthesis of zinc oxide nanoparticles and their broad-spectrum antibacterial activity. Next Research. 2025;2(1):100164.
41. Mohammadi FM, Ghasemi N. Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. Journal of Nanostructure in Chemistry. 2018;8:93-102.
42. Uribe-López M, Hidalgo-López M, López-González R, Frías-Márquez D, Núñez-Nogueira G, Hernández-Castillo D, et al. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. Journal of Photochemistry and photobiology A: Chemistry. 2021;404:112866.
43. Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology. 2019;10:57.
44. Chauhan R, Reddy A, Abraham J. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Applied nanoscience. 2015;5:63-71.
45. Al-Zahrani H, El-Waseif A, El-Ghwas D. Biosynthesis and evaluation of TiO2 and ZnO nanoparticles from in vitro stimulation of Lactobacillus johnsonii. J Innov Pharm Biol Sci. 2018;5(1):16-20.
46. Suba S, Vijayakumar S, Vidhya E, Punitha V, Nilavukkarasi M. Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies. Sensors International. 2021;2:100104.
47. Garmasheva I, Kovalenko N, Voychuk S, Ostapchuk A, Livins’ka O, Oleschenko L. Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro. BioImpacts. 2016;6(4):219–23.
48. Selvarajan E, Mohanasrinivasan V. Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters. 2013;112:180-2.
49. Chakra PS, Banakar A, Puranik SN, Kaveeshwar V, Ravikumar C, Gayathri D. Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258. Beilstein Journal of Nanotechnology. 2025;16(1):78-89.
50. Salman Z, Taj Al-Deen WR. Biosynthesis of zinc oxide nanoparticles by Lactobacillus casei. Biochemical & Cellular Archives. 2019;19:2259-65.
51. Iqtedar M, Siddique M, Shahzad A, Kaleem A, Abdullah R. Green Synthesis of zinc oxide nanoparticles by Bacillus subtilis and their use in various applications. Biologia (Lahore). 2024;70(2):66-74.
52. Shkodenko L, Kassirov I, Koshel E. Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms. 2020;8(10):1545.
53. Al-Tameemi AI, Masarudin MJ, Rahim RA, Mizzi R, Timms VJ, Isa Nm, et al. Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria. Applied Microbiology and Biotechnology. 2025;109(1):32.
54. Dadi R, Azouani R, Traore M, Mielcarek C, Kanaev A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Materials Science and Engineering: C. 2019;104:109968.
55. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020-8.
56. Manoharan C, Pavithra G, Dhanapandian S, Dhamodaran P, Shanthi B. Properties of spray pyrolised ZnO: Sn thin films and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;141:292-9.
57. Liu Y-j, He L-l, Mustapha A, Li H, Hu Z, Lin M-s. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of applied microbiology. 2009;107(4):1193-201.
58. Sánchez-López P, Hernández-Hernández KA, Fuentes Moyado S, Cadena Nava RnD, Smolentseva E. Antimicrobial and virus adsorption properties of Y-Zeolite exchanged with silver and zinc cations. ACS omega. 2024;9(7):7554-63.
59. Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science. 2015;345:329-36.
60. Zhong L, Liu H, Samal M, Yun K. Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity. Journal of Photochemistry and Photobiology B: Biology. 2018;183:293-301.
61. Kashef N, Huang Y-Y, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics. 2017;6(5):853-79.
62. Yoo SI, Yang M, Brender JR, Subramanian V, Sun K, Joo NE, et al. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. Angewandte Chemie International Edition. 2011;123:5216-21.
63. El-Telbany M, Mohamed AA, Yahya G, Abdelghafar A, Abdel-Halim MS, Saber S, et al. Combination of meropenem and zinc oxide nanoparticles; antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics. 2022;11(10):1374.
64. Udayagiri H, Sana SS, Dogiparthi LK, Vadde R, Varma RS, Koduru JR, et al. Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity. Scientific Reports. 2024;14:19714.
65. Afrasiabi S, Partoazar A. Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Frontiers in Microbiology. 2024;15:1387114.
66. Ann LC, Mahmud S, Bakhori SKM, Sirelkhatim A, Mohamad D, Hasan H, et al. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceramics International. 2014;40(2):2993-3001.
67. Hassan A, Al-Salmi FA, Saleh MA, Sabatier J-M, Alatawi FA, Alenezi MA, et al. Inhibition mechanism of methicillin-resistant staphylococcus aureus by zinc oxide nanorods via suppresses penicillin-binding protein 2a. ACS Omega. 2023;8(11):9969-77.
68. Lianga SXT, Wong LS, Lim YM, Djearamanea S, Lee PF. Effects of zinc oxide nanoparticles on Streptococcus pyogenes. South African Journal of Chemical Engineering. 2020;34(1):63-71.
69. Jiang Y, Zhang L, Wen D, Ding Y. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Materials Science and Engineering: C. 2016;69:1361-6.
70. Lee J-H, Kim Y-G, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological Research. 2014;169(12):888-96.
71. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Frontiers In Microbiology. 2019;10:539.
72. Meraat R, Ziabari AA, Issazadeh K, Shadan N, Jalali KM. Synthesis and characterization of the antibacterial activity of zinc oxide nanoparticles against Salmonella typhi. Acta Metallurgica Sinica (English Letters). 2016;29:601-8.
73. Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biological trace element research. 2021;199(7):2788-99.
74. Jain D, Shivani, Bhojiya AA, Singh H, Daima HK, Singh M, et al. Microbial fabrication of zinc oxide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Frontiers in chemistry. 2020;8:778.
75. Galván Márquez I, Ghiyasvand M, Massarsky A, Babu M, Samanfar B, Omidi K, et al. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae. PloS one. 2018;13(3):e0193111.
76. Janaki AC, Sailatha E, Gunasekaran S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;144:17-22.
77. Yassin MT, Al-Otibi FO, Al-Askar AA, Elmaghrabi MM. Synergistic anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles with antifungal agents against nosocomial candidal pathogens. Microorganisms. 2023;11(8):1957.
78. Saxena P, Saharan V, Baroliya PK, Gour VS, Rai MK. Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide. Toxicology Reports. 2021;8:724-31.
79. Tang Y, Xin H, Yang S, Guo M, Malkoske T, Yin D, et al. Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback. Aquatic Toxicology. 2018;204:19-26.
80. Djearamane S, Lim YM, Wong LS, Lee PF. Cytotoxic effects of zinc oxide nanoparticles on cyanobacterium Spirulina (Arthrospira) platensis. PeerJ. 2018;6:e4682.
81. Zhu X, Wang J, Cai L, Wu Y, Ji M, Jiang H, et al. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. Journal of Hazardous Materials. 2022;430:128436.
82. Djearamane S, Loh ZC, Lee JJ, Wong LS, Rajamani R, Luque PA, et al. Remedial aspect of zinc oxide nanoparticles against Serratia marcescens and Enterococcus faecalis. Frontiers in Pharmacology. 2022;13:891304.
83. Wei Y, Wang J, Wu S, Zhou R, Zhang K, Zhang Z, et al. Nanomaterial-based zinc ion interference therapy to combat bacterial infections. Frontiers in Immunology. 2022;13:899992.
84. Kessler A, Hedberg J, Blomberg E, Odnevall I. Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media—a review of reactions of importance to nanotoxicity and proposal for categorization. Nanomaterials. 2022;12(11):1922.
85. Rasheed HM, Aroosh K, Meng D, Ruan X, Akhter M, Cui X. A review on modified ZnO to address environmental challenges through photocatalysis: Photodegradation of organic pollutants. Materials Today Energy. 2024;48:101774.
86. Baig A, Siddique M, Panchal S. A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application. Catalysts. 2025;15(2):100.
87. Jiang S, Lin K, Cai M. ZnO nanomaterials: current advancements in antibacterial mechanisms and applications. Frontiers in Chemistry. 2020;8:580.
88. Caron AJ, Ali IJ, Delgado MJ, Johnson D, Reeks JM, Strzhemechny YM, et al. Zinc oxide nanoparticles mediate bacterial toxicity in Mueller-Hinton Broth via Zn2+. Frontiers in Microbiology. 2024;15:1394078.
89. Mishra YK, Chakravadhanula VSK, Hrkac V, Jebril S, Agarwal DC, Mohapatra S, et al. Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability. Journal of Applied Physics. 2012;112(6):064308.
90. Davaeifar S, Shahabani-Zahiri H, Mohammadi M, Akbari-Noghabi K. Evaluation of the Effect of Zinc Oxide Nanoparticles on the Inhibition of Biofilm formation of standard Pathogenic Bacteria and Comparison with Drug Resistant Isolates. Journal of Ilam University of Medical Sciences. 2019;27(3):138-49.
91. Jain KK. Drug delivery systems-an overview. Drug delivery systems. 2008;437:1-50.
92. Agrawal A, Veronica A, Mythreyi R, Gopenath T, Basalingappa KM, Gobianand K. Zinc Oxide Nanoparticles in Disease Diagnosis. Metals in Medicine: Apple Academic Press; 2025. p. 81-117.
93. Luo Z, Rong P, Yang Z, Zhang J, Zou X, Yu Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules. 2024;29(14):3373.
94. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;90:78-84.
95. Gao Y, Han Y, Cui M, Tey HL, Wang L, Xu C. ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure. Journal of Materials Chemistry B. 2017;5(23):4535-41.
96. Thompson CB, Wiemken TL, Brown TS. Effect of postoperative dressing on excisions performed on the leg: a comparison between zinc oxide compression dressings versus standard wound care. Dermatologic Surgery. 2017;43(11):1379-84.
97. Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic chemistry and applications. 2018;2018(1):1062562.
98. Mishchenko T, Mitroshina E, Balalaeva I, Krysko O, Vedunova M, Krysko DV. An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2019;1871(1):99-108.
99. Houšková V, Štengl V, Bakardjieva S, Murafa N, Kalendova A, Opluštil F. Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity. The Journal of Physical Chemistry A. 2007;111(20):4215-21.
100. Agarwal H, Shanmugam V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorganic chemistry. 2020;94:103423.
101. Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth T, Kim KJ, Shin HM. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology B: Biology. 2015;146:10-7.
102. Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug discovery today. 2017;22(12):1825-34.
103. Wang Y, Song S, Liu J, Liu D, Zhang H. ZnO‐functionalized upconverting nanotheranostic agent: multi‐modality imaging‐guided chemotherapy with on‐demand drug release triggered by pH. Angewandte Chemie International Edition. 2015;54(2):536-40.
104. Eixenberger JE, Anders CB, Wada K, Reddy KM, Brown RJ, Moreno-Ramirez J, et al. Defect engineering of ZnO nanoparticles for bioimaging applications. ACS applied materials & interfaces. 2019;11(28):24933-44.
105. Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine. 2014;9(1):89-104.
106. El-Gharbawy RM, Emara AM, Abu-Risha SE-S. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomedicine & Pharmacotherapy. 2016;84:810-20.
107. Mohandas A, PT SK, Raja B, Lakshmanan V-K, Jayakumar R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. International journal of nanomedicine. 2015;10(sup2):53-66.
108. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. Rsc Advances. 2014;4(93):51528-36.
109. Ghareib M, Abu Tahon M, Abdallah WE, Hussein M. Free radical scavenging activity of zinc oxide nanoparticles biosynthesised using Aspergillus carneus. Micro & Nano Letters. 2019;14(11):1157-62.
110. Marin-Flores CA, Rodríguez-Nava O, García-Hernández M, Ruiz-Guerrero R, Juárez-López F, de Jesús Morales-Ramírez A. Free-radical scavenging activity properties of ZnO sub-micron particles: size effect and kinetics. Journal of Materials Research and Technology. 2021;13:1665-75.
111. Rossi S, Marciello M, Sandri G, Ferrari F, Bonferoni MC, Papetti A, et al. Wound dressings based on chitosans and hyaluronic acid for the release of chlorhexidine diacetate in skin ulcer therapy. Pharmaceutical development and technology. 2007;12(4):415-22.
112. Zhang R, Carlsson F, Edman M, Hummelgård M, Jonsson BG, Bylund D, et al. Escherichia coli bacteria develop adaptive resistance to antibacterial ZnO nanoparticles. Advanced Biosystems. 2018;2(5):1800019.
113. Dey S, lochan Mohanty D, Divya N, Bakshi V, Mohanty A, Rath D, et al. A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications. Intelligent Pharmacy. 2024;3(1):53-70.
114. Mondal SK, Chakraborty S, Manna S, Mandal SM. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharmaceutics. 2024;1:388-402.
115. Strekalovskaya EI, Perfileva AI, Krutovsky KV. Zinc oxide nanoparticles in the “Soil–Bacterial Community–Plant” system: Impact on the stability of soil ecosystems. Agronomy. 2024;14(7):1588.
116. Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, et al. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Advanced Biomedical Research. 2024;13(1):113.
117. Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, et al. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Advances. 2024;14(29):20992-1034.