A Noninvasive Approach to Predict Body and Carcass Weights in Goats and Sheep using in vivo Body Measurements
Subject Areas :
M.R. de Souza
1
*
,
L.C. Ramos
2
,
R.O. Silva
3
,
G.A. Pereira
4
,
M.G. de Freitas
5
,
G.C. Gois
6
,
M.L. Chizzotti
7
,
R.T.S. Rodrigues
8
1 - Brazilian Agricultural Research Corporation, Embrapa Semiárido, 56302-970, Petrolina, PE, Brazil
2 - Department of Animal Science, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, 56300-990, Brazil
3 - Department of Animal Science, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, 56300-990, Brazil
4 - Department of Animal Science, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, 56300-990, Brazil
5 - Department of Animal Science, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, 56300-990, Brazil
6 - Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
7 - Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
8 - Department of Animal Science, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, 56300-990, Brazil
Keywords: chest circumference, morphometry, prediction models, ruminants,
Abstract :
This study aimed to develop and validate predictive models for estimating body weight (BW) and hot car-cass weight (HCW) in small ruminants using in vivo morphometric measurements. A total of 400 animals (250 sheep and 150 goats) were used for BW prediction, and among them, 200 sheep and 64 goats were slaughtered to develop HCW models. The in vivo measurements included chest circumference (CC), body length (BL), and withers height (WH). Model performance was evaluated through K-fold cross-validation, considering the coefficient of determination (R²), root mean square error of cross-validation (RMSECV), and prediction bias (BIAS). For BW, the combined-species simple model achieved R²= 0.90 and RMSECV= 3.34 kg, while the multiple model yielded R²= 0.91 and RMSECV= 4.44 kg. Sheep-specific models showed R²= 0.82 and RMSECV= 3.47 kg for the simple model, and R²= 0.85 and RMSECV= 4.33 kg for the multiple model. Goat models reached R²= 0.89 and RMSECV= 2.95 kg (simple), and R²= 0.90 and RMSECV= 4.29 kg (multiple). For HCW, the combined simple model (R²=0.79; RMSECV=1.89 kg) and the sheep-specific simple model (R²=0.75; RMSECV=1.90 kg) showed good predictive ability. The simple model for goats presented moderate predictive power (R²=0.73; RMSECV=1.75 kg), whereas the multiple model was not significant. In conclusion, BW and HCW can be accurately estimated using simple linear regression models, which may be applied either separately or jointly across species.
Abd‑Allah S., Abd‑El Rahman H.H., Shoukry M.M., Mohamed M.I., Salman F.M. and Abedo A.A. (2019). Some body meas-urements as a management tool for Shami goats raised in sub-tropical areas in Egypt. Bull Natl. Res. Cent. 43, 1-5.
Alves A.A.C., Pinzon A.C., da Costa R.M., da Silva M.S.S., Vieira E.H.M., de Mendonça I.B., Viana V.S.S. and Lôbo R.N.B. (2019). Multiple regression and machine learning based methods for carcass traits and saleable meat cuts predic-tion using non-invasive in vivo measurements in commercial lambs. Small Rumin. Res. 171, 49-56.
Atoui A., Carabano M.J., Lasoued M., Laroussi A., Abdennebi M., Tlahig S., Ben Salem F. and Najari S. (2023). Prediction of birth weight using body measurements of local caprine population kids raised in a low-input breeding mode under arid environment. Trop. Anim. Health Prod. 56, 15-25.
Bautista‑Díaz E., Mezo‑Solis J.A., Herrera‑Camacho J., Cruz‑Hernández A., Gomez‑Vázquez A., Tedeschi L.O., Lee‑Rangel H.A., Vargas‑Bello‑Pérez E. and Chay‑Canul A.J. (2020). Prediction of carcass traits of hair sheep lambs us-ing body measurements. Animals. 10, 1276-1286.
Bennett N.D., Croke B.F., Guariso G., Guillaume J.H., Hamilton S.H., Jakeman A.J. and Andreassian V. (2013). Characterising performance of environmental models. Environ. Model. Softw. 40, 1-20.
Bousbia A., Boudalia S., Gueroui Y., Hadded K., Bouzaoui A., Kiboub D. and Symeon G. (2021). Use of multivariate analy-sis as a tool in the morphological characterization of the main indigenous bovine ecotypes in northeastern Algeria. PLoS One. 16, e0255153.
Brasil (2017). Regulamento de Inspeção Industrial e Sanitária de Produtos de Origem Animal – RIISPOA. Decreto nº 9.013 de 29 de março de 2017.
Callegari-Jacques S.M. (2003). Bioestatística: Princípios e Aplica-ções. Artmed, Porto Alegre, Brazil.
Canul-Solis J., Angeles-Hernandez J.C., García-Herrera R.A., Razo-Rodríguez O.E., Lee-Rangel H.A., Piñeiro-Vázquez A.T., Casanova-Lugo F., Rosales-Nieto C.A. and Chay-Canul A.J. (2020). Estimation of body weight in hair ewes using an indirect measurement method. Trop. Anim. Health Prod. 52, 2341-2347.
Chai T. and Draxler R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247-1250.
Chay-Canul A.J., García-Herrera R.A., Salazar-Cuytún R., Ojeda-Robertos N.F., Cruz-Hernández A., Fonseca M.A. and Canul-Solís J.R. (2019). Development and evaluation of equations to predict body weight of Pelibuey ewes using heart girth. Rev. Mex. de Cienc. Pec. 10, 767-777.
Costa R.G., Lima A.G.V.O., Ribeiro N.L., Medeiros A.N., Medeiros G.R., Gonzaga Neto S. and Oliveira R.L. (2020). Predicting the carcass characteristics of Morada Nova lambs using biometric measurements. R. Bras. Zootec. 49, 1-9.
Dakhlan A., Saputra A., Hamdani M.D.I. and Sulastri A. (2020). Regression models and correlation analysis for predicting body weight of female Ettawa grade goats using body meas-urements. Adv. Anim. Vet. Sci. 11, 1142-1146.
De Carvalho I.S., Lázaro S.F., Carrara E.R., de Souza M.R. and Tonhati H. (2025). Genetic Evaluation Weight, Carcass and Stayability in Nellore Females. J. Anim. Breed. Genet. 142(6), 718-731.
Gomes M.B., Neves M.L.M.W., Barreto L.M.G., Ferreira M.A., Monnerat J.P.I.S., Carone G.M., Morais J.M and Véras A.S.C. (2021). Prediction of carcass composition through measure-ments in vivo and measurements of the carcass of growing Santa Inês sheep. PLoS One. 16, e0247950.
Gurgel A.L.C., Difante G.S., Emerenciano Neto J.V., Araújo C.G.F, Costa M.G., Ítavo L.C.V., Araujo I.M.M., Costa C.M., Santana J.C.S., Ítavo C.C.B.F. and Fernandes P.B. (2021). Prediction of carcass traits of Santa Inês lambs finished in tropical pastures through biometric measurements. Animals. 11, 2329-2335.
Habib M.A., Akhtar A., Bhuiyan A.K.F.H., Choudhury M.P. and Afroz M.F. (2019). Biometrical relationship between body weight and body measurements of black Bengal goat (BBG). Curr. J. Appl. Sci. Technol. 35, 1-7.
IBGE. (2023). Instituto Brasileiro de Geografia e Estatística. Pes-quisa da Pecuária. Available at: https://www.ibge.gov.br/explica/producao-agropecuaria/br Accessed May, 2025.
Karna D.K., Acharya A.P., Das B.C., Nayak G. and Dibyadarshini M.R. (2022). Comparison of regression methods and Shaeffer’s formula for predicting the live body weights of Ganjam goats. Indian J. Anim. Sci. 92, 770-775.
Karna D.K., Mishra C., Dash S.K., Acharya A.P., Panda S. and Chinnareddyvari C.S. (2024). Exploring body morphometry and weight prediction in Ganjam goats in India through prin-cipal component analysis. Trop. Anim. Health Prod. 56, 298-305.
Macedo‑Barragán R., Arredondo‑Ruiz V., Haubi‑Segura C. and Castillo‑Zamora P. (2021). Comparison of linear and nonlin-ear models to estimate body weight of Pelibuey ewes from body measurements. Trop. Anim. Health Prod. 53, 1-5.
Martins S.R., Chizzotti M.L., Yamamoto S.M., Rodrigues R.T.S., Busato K.C. and Silva T.S. (2014). Carcass and non‑carcass component yields of crossbred Boer and Brazilian semiarid indigenous goats subjected to different feeding levels. Trop. Anim. Health Prod. 46, 647-653.
Moro A.B., Pires C.C., da Silva L.P., Menegon A.M., Venturini R.S., Martins A.A., Mello R.O. and Galvani D.B. (2019). Pre-diction of physical characteristics of the lamb carcass using in vivo bioimpedance analysis. Animal. 13, 1744-1749.
Nahari R.V., Subagiarti N., Jauhari A., Alfita R., Wibisono K.A., Ibadillah A.F. and Pramudia M. (2018). Cow weight estima-tion using local adaptive thresholding method and connected component labelling. Pp. 148-152. in Proc. Int. Conf. Sci. Technol. Nusa Penida, Indonesia.
Nascimento G.V., Medeiros G.R., Silva C.T., Neves R.S., Ramos C.T.C., Lira E.C., Felix E.S. and Melo M.N. (2019). Avalia-ção da eficiência do uso da fita métrica para estimativa do peso corporal em bovinos Curraleiro Pé‑Duro/Efficiency evaluation of the metric tape use to estimate the body weight in Curraleiro Pé-Duro cattle. Brazilian J. Dev. 5, 16470-16478.
Osório J.C.S., Osório M.T.M., Vargas Junior F.M., Fernandes A.R.M., Seno L.O., Ricardo H.A., Rossini F.C. and Orrico Junior M.A.P. (2012). Critérios para redução do animal e qualidade da carne. Agrarian. 5, 433-443.
Pereira A.A., Daher L.C.C., Freitas C.S., Monteiro S.D.N., Araújo J.C., Sousa M.A.P., Miranda A.S., Rodrigues T.C.G.C., Silva J.A.R.D., Lima A.C.S., Silva A.G.M.E. and Lourenço-Júnior J.B. (2023). Performance, carcass characteristics and non-carcass components of Santa Ines and crossbred (Santa Ines x Dorper) lambs finished in different confinement strategies. PLoS One. 18, e0293819.
Ramos I.O., Rezende M.P.G., Carneiro P.L.S., de Souza J.C., Sereno J.R., Bozzi R. and Malhado C.H.M. (2019). Body con-formation of Santa Inês, Texel and Suffolk ewes raised in the Brazilian Pantanal. Small Rumin. Res. 172, 42-47.
Rashad A.M.A., El‑Hedainy D.K., Mahdy A.E., Badran A.E. and El-Barbary A.S.A. (2019). Utilization of live body weight, measurements, and eye muscle components to predict carcass performance of fattened Egyptian male buffalo calves. Trop. Anim. Health Prod. 51, 2405-2412.
Rauschenberger A., Glaab E. and Van De Wiel M. (2021). Predic-tive and interpretable models via the stacked elastic net. Bioin-formatics. 37, 2012-2016.
Rocha‑Silva M., Britto F.B., da Silva D.L.S., Oliveira A.O., da Silva L.A.S., de Oliveira M.B., de Araújo C.V., Carvalho G.M.C. and Sarmento J.L.R. (2024). Prediction of body weight of Curraleiro Pé‑Duro cattle based on morphometric measurements. Trop. Anim. Health Prod. 56, 42-52.
Santos H.P., Aiura A.L.O., Gonçalves G.A.M. and Aiura F.S. (2020). Phenotypic characterization and weight prediction of crossbred Dorper × Santa Inês ewes. Rev. Bras. Saúde Prod. Anim. 21, 1-8.
SAS Institute Inc. (2023). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Selvan A.S., Thangaraj S., Dash S., Karthikeyan A. and Karthick-eyan S.M.K. (2023). Multivariate analysis of morphometric traits of Malaimadu cattle—autochthonous draft cattle of south India. Trop. Anim. Health Prod. 55, 369-375.
Silva F.G., Carreira E., Ramalho J.M., Correia T., Meira M., Con-ceição C., Silva S.R., Pereira A.M.F. and Cerqueira J.L. (2024). Predicting body weight in pre-weaned Holstein–Friesian calves using morphometric measurements. Animals. 14, 2129-2134.
Souza J.S., Difante G.S., Emerencio Neto J.V., Lana A.M.Q., Roberto F.F.S. and Ribeiro P.H.C. (2019). Biometric meas-urements of Santa Inês meat sheep reared on Brachiariabri-zantha pastures in Northeast Brazil. PLoS One. 14, 1-16.
Tedeschi L.O. (2006). Assessment of the adequacy of mathemati-cal models. Agric. Syst. 89, 225-247.
Varkoohi S., Bani-Saadat H. and Razzagh-Zadeh S. (2018). Esti-mation of genetic parameters for growth and body measure-ment traits in different ages in Iranian Makuei sheep. Iranian J. Appl. Anim. Sci. 8, 77-82.
Zergaw N., Dessie T. and Kebede K. (2017). Using morphometric traits for live body weight estimation and multivariate analysis in Central Highland and Woyto‑Guji goat breeds, Ethiopia. African J. Agric. Res. 12, 1326-1331.