Examining Different Models of Gene Action in Genomic Evaluation
Subject Areas :H. Sahebalam 1 * , M. Gholizadeh 2 , S.H. Hafezian 3
1 - Department of Animal Science, Faculty of Animal and Aquatic Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 - Department of Animal Science, Faculty of Animal and Aquatic Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 - Department of Animal Science, Faculty of Animal and Aquatic Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
Keywords: bias, dominance deviation, epistasis interaction, GEBV, GEGV, prediction accu-racy,
Abstract :
The purpose of this study was to compare different models of gene action in genomic selection using two statistical methods including Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian Least Ab-solute Shrinkage and Selection Operator (BLASSO). Therefore, three gene action models including purely additive effects (A), additive effects plus dominant deviations (AD) and additive effects plus dominant de-viations plus epistasis interactions (ADE) were fitted to the data by each method (i.e., GBLUP or BLASSO, GBLUP-D or BLASSO-D and GBLUP-DE or BLASSO-DE, respectively). Real genotypic data of mice were used and, phenotypes were simulated from these real genotypes based on different number of quantita-tive trait loci (QTLs) and levels of broad-sense heritability (T1:20 QTLs and H2=0.4, T2:20 QTLs and H2=0.8, T3: 100 QTLs and H2=0.4, T4:100 QTLs and H2=0.8, T5:200 QTLs and H2=0.4, T6:200 QTLs and H2=0.8). BLASSO recorded a higher prediction accuracy (PA) than GBLUP. This increase in PA was greater when the number of QTLs was low (20 QTLs), and this advantage decreased with the increase in the number of QTLs. When traits were under the control of a small number of QTLs, the PA of model A was slightly higher than AD and ADE models. The GBLUP-D or BLASSO-D methods showed a lower bias compared to GBLUP or BLASSO methods, and this bias was minimized in GBLUP-DE or BLASSO-DE methods for all traits.
Abdollahi-Arpanahi R., Gianola D. and Peñagaricano F. (2020). Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genet. Sel. Evol. 52, 1-15.
Akaike H. (1974). A new look at the statistical model identifica-tion. IEEE Trans. Autom. Cont. 19(6), 716-723.
Aliloo H., Pryce J.E., González-Recio O., Cocks B.G. and Hayes B.J. (2016). Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits. Genet. Sel. Evol. 48, 1-11.
Aliloo H., Pryce J.E., González-Recio O., Cocks B.G., Goddard M.E. and Hayes B.J. (2017). Including nonadditive genetic ef-fects in mating programs to maximize dairy farm profitabil-ity. J. Dairy. Sci. 100, 1203-1222.
Alves K., Brito L.F., Baes C.F., Sargolzaei M., Robinson J.A.B. and Schenkel F.S. (2020). Estimation of additive and non-additive genetic effects for fertility and reproduction traits in North American Holstein cattle using genomic information. J. Anim. Breed. Genet. 137, 316-330.
Atefi A., Shadparvar A.A. and Hossein-Zadeh N.G. (2016). Com-parison of whole genome prediction accuracy across genera-tions using parametric and semi parametric methods. Acta Sci. Anim. Sci. 38, 447-453.
Barbosa I.D.P., da Silva M.J., da Costa W.G., de Castro Sant'Anna I., Nascimento M. and Cruz C.D. (2021). Genome-enabled prediction through machine learning methods considering dif-ferent levels of trait complexity. Crop Sci. 61, 1890-1902.
Bengio Y. and Grandvalet Y. (2004). No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 5, 1089-1105.
Charfeddine N., Rodríguez-Ramilo S.T., Jiménez-Montero J.A., Carabaño M.J. and González-Recio O. (2013). Non parametric vs. gblup model for genomic evaluation with large reference population in holstein cattle. Int. Bull. 47, 25-35.
Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge Academic, New York.
Combs E. and Bernardo R. (2013). Accuracy of genome wide selection for different traits with constant population size, heritability, and number of markers. Plant Genome. 6, 1-7.
Coster A., Bastiaansen J.W., Calus M.P., van Arendonk J.A. and Bovenhuis H. (2010). Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance. Genet. Sel. Evol. 42, 1-11.
Daetwyler H.D., Pong-Wong R., Villanueva B. and Woolliams J.A. (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics. 185, 1021-1031.
de Almeida Filho J.E., Guimarães J.F.R., Fonsceca e Silva F., Vilela de Resende M.D., Muñoz P., Kirst M. and de Resende Júnior M.F.R. (2019). Genomic prediction of additive and non-additive effects using genetic markers and pedigrees. G3: Genes, Genomes, Genetics. 9, 2739-2748.
Duchemin S.I., Colombani C., Legarra A., Baloche G., Larroque H., Astruc J.M., Barillet F., Robert-Granié C. and Manfredi E. (2012). Genomic selection in the French Lacaune dairy sheep breed. J. Dairy. Sci. 95, 2723-2733.
Duenk P., Calus M.P., Wientjes Y.C. and Bijma P. (2017). Bene-fits of dominance over additive models for the estimation of average effects in the presence of dominance. G3: Genes, Ge-nomes Genet. 7, 3405-3414.
Ghafouri-Kesbi F., Rahimi-Mianji G., Honarvar M. and Nejati-Javaremi A. (2016). Predictive ability of random forests, boosting, support vector machines and genomic best linear unbiased prediction in different scenarios of genomic evalua-tion. Anim. Prod. Sci. 57, 229-236.
Habier D., Fernando R.L. and Dekkers J. (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics. 177, 2389-2397.
Hayes B.J., Bowman P.J., Chamberlain A.C., Verbyla K. and Goddard M.E. (2009a). Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol. 41, 1-9.
Hayes B.J., Daetwyler H.D., Bowman P., Moser G., Tier B., Crump R., Khatkar M., Raadsma H.W. and Goddard M.E. (2010). Accuracy of genomic selection: comparing theory and results. Proc. Assoc. Advmt. Anim. Breed. Genet. 18, 34-37.
Hayes B.J., Visscher P.M. and Goddard M.E. (2009b). Increased accuracy of artificial selection by using the realized relation-ship matrix. Genet. Res. 91, 47-60.
Heidaritabar M., Wolc A., Arango J., Zeng J., Settar P., Fulton J.E., O'Sullivan N.P., Bastiaansen J.W., Fernando R.L., Gar-rick D.J. and Dekkers J.C. (2016). Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers. J. Anim. Breed. Genet. 133, 334-346.
Hill W.G. (2010). Understanding and using quantitative genetic variation. Philos. Trans. R. Soc. Lond. B Sci. 365, 73-85.
Legarra A., Robert-Granié C., Manfredi E. and Elsen J.M. (2008). Performance of genomic selection in mice. Genetics. 180, 611-618.
Mäki-Tanila A. (2007). An overview on quantitative and genomic tools for utilizing dominance genetic variation in improving animal production. Agric. Food Sci. 16, 188-198.
McHugh N., Meuwissen T.H.E., Cromie A.R. and Sonesson A.K. (2011). Use of female information in dairy cattle genomic breeding programs. J. Dairy Sci. 94, 4109-4118.
Meuwissen T.H., Hayes B.J. and Goddard M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157, 1819-1829.
Momen M., Mehrgardi A.A., Sheikhi A., Kranis A., Tusell L., Morota G., Rosa G.J. and Gianola D. (2018). Predictive ability of genome-assisted statistical models under various forms of gene action. Sci. Rep. 8, 12309-12318.
Morgante F., Huang W., Maltecca C. and Mackay T.F. (2018). Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individu-als. Heredity. 120, 500-514.
Nishio M. and Satoh M. (2014). Including dominance effects in the genomic BLUP method for genomic evaluation. PLoS One. 9, e85792.
Park T. and Casella G. (2008). The bayesian lasso. J. Am. Stat. Assoc. 103, 681-686.
Pérez P. and de Los Campos G. (2014). Genome-wide regression and prediction with the BGLR statistical pack-age. Genetics. 198, 483-495.
Resende M.D., Resende M.F., Sansaloni C.P., Petroli C.D., Mis-siaggia A.A., Aguiar A.M., Abad J.M., Takahashi E.K., Rosado A.M., Faria D.A. and Pappas G.J. (2012). Genomic selection for growth and wood quality in Eucalyptus: Captur-ing the missing heritability and accelerating breeding for com-plex traits in forest trees. New Phytol. 194, 116-128.
Sahebalam H., Gholizadeh M., Hafezian H. and Farhadi A. (2019). Comparison of parametric, semiparametric and non-parametric methods in genomic evaluation. J. Genet. 98, 1-8.
Sahebalam H., Gholizadeh M., Hafezian H. and Ebrahimi F. (2022). Evaluation of Bagging approach versus GBLUP and Bayesian LASSO in genomic prediction. J. Genet. 101, 19-28.
Sahebalam H., Gholizadeh M. and Hafezian H. (2024a). Investi-gating the performance of frequentist and Bayesian techniques in genomic evaluation. Biochem. Genet. 21, 1-27.
Sahebalam H., Gholizadeh M. and Hafezian S.H. (2024b). The effect of different approaches to determining the regularization parameter of bayesian LASSO on the accuracy of genomic prediction. Mamm. Genome. 18, 1-15.
Salehi A., Bazrafshan M. and Abdollahi-Arpanahi R. (2021). As-sessment of parametric and non-parametric methods for pre-diction of quantitative traits with non-additive genetic archi-tecture. Ann. Anim. Sci. 21, 469-484.
Shirali M., Miraei-Ashtiani S.R., Pakdel A., Haley C., Navarro P. and Pong-Wong R. (2015). A comparison of the sensitivity of the BayesC and genomic best linear unbiased prediction (GBLUP) methods of estimating genomic breeding values un-der different quantitative trait locus (QTL) model assumptions. Iranian J. Appl. Anim. Sci. 5, 41-46.
Sousa I.C.D., Nascimento M., Silva G.N., Nascimento A.C.C., Cruz C.D., Almeida D.P.D., Pestana K.N., Azevedo C.F., Zambolim L. and Caixeta E.T. (2021). Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms. Sci. Agric. 78, 1-8.
Spiegelhalter D.J., Best N.G., Carlin B.P. and Van der Linde A. (2002). Bayesian measures of model complexity and fit. J. R. Statist. Soc. B. 64, 583-639.
Su G., Christensen O.F., Ostersen T., Henryon M. and Lund M.S. (2012). Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS One. 7, e45293.
Toro M.A. and Varona L. (2010). A note on mate allocation for dominance handling in genomic selection. Genet. Sel. Evol. 42, 1-9.
Valdar W., Solberg L.C., Gauguier D., Burnett S., Klenerman P., Cookson W.O., Taylor M.S., Rawlins J.N.P., Mott R. and Flint J. (2006a). Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat. Genet. 38, 879-887.
Valdar W., Solberg L.C., Gauguier D., Cookson W.O., Rawlins J.N.P., Mott R. and Flint J. (2006b). Genetic and environ-mental effects on complex traits in mice. Genetics. 174, 959-984.
VanRaden P.M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414-4423.
VanRaden P.M., Van Tassell C.P., Wiggans G.R., Sonstegard T.S., Schnabel R.D., Taylor J.F. and Schenkel F.S. (2009). In-vited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92, 16-24.
Varona L., Legarra A., Toro M.A. and Vitezica Z.G. (2018). Non-additive effects in genomic selection. Front. Genet. 9, 78-87.
Vitezica Z.G., Varona L. and Legarra A. (2013). On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics. 195, 1223-1230.
Vitezica Z.G., Reverter A., Herring W. and Legarra A. (2018). Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genet. Sel. Evol. 50, 1-8.
Weber K.L., Thallman R.M., Keele J.W., Snelling W.M., Bennett G.L., Smith T.P.L., McDaneld T.G., Allan M.F., Van Eenen-naam A.L. and Kuehn L. (2012). Accuracy of genomic breed-ing values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes. J. Anim. Sci. 90, 4177-4190.
Wiggans G.R., VanRaden P.M. and Cooper T.A. (2011). The genomic evaluation system in the United States: Past, present, future. J. Dairy Sci. 94, 3202-3211.
Zeng J., Toosi A., Fernando R.L., Dekkers J.C. and Garrick D.J. (2013). Genomic selection of purebred animals for crossbred performance in the presence of dominant gene action. Genet. Sel. Evol. 45, 1-17.