Association between the Expression Pattern of Two Fibroblast Growth Factor 2 (FGF2) and Patterns Estrogen Receptor 1 (ESR1) Promising Key Genes in Sheep with Extra Functional Teats
Subject Areas : CamelS. Ghahremani 1 , A. Javanmard 2 * , S. Taheri 3
1 - Department of Animal Science, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Ferdowsi, Mashhad, Iran
Keywords: ESR1 gene, FGF2 gene, sheep, teat number,
Abstract :
The nursing ability of productive ewes has been a subject of extensive research. From today's perspective, the survivability of multiple lambs of highly productive ewes in birth time depends largely on the number of functional teats. Different expression patterns in a range of candidate genes may act as a regulatory sig-nal for a particular phenotype from a molecular genetic perspective. A molecular study was developed to validate the supernumerary teats characteristics. The second research phase includes a case-control applica-tion study to analyze the gene expression patterns of fibroblast growth factor 2 (FGF2) and expression of estrogen receptor 1 (ESR1) genes. The approach utilized standard laboratory techniques for RNA extraction, cDNA synthesis and cyber green dye-based gene expression quantification. When comparing two routine teat groups with four teats observation of the gene expression profile clearly shows the FGF2 gene pattern (P<0.01), There was no obvious difference in ESR1 gene response between the two experimental groups. This means that by combining promising gene expression tools, molecular approaches and evidence to vali-date gene expression in ewe carry supernumerary teats which will ultimately improve sheep production. Future research could provide valuable insights into the literature.
Ahbara A., Bahbahani H., Almathen F., Al Abri M., Agoub M.O., Abeba A., Kebede A., Musa H.H., Mastrangelo S., Pilla F. and Ciani E. (2019). Genome-wide variation., candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front. Genet. 9, 1-8.
Arakawa A., Okumura N., Taniguchi M., Hayashi T., Hirose K., Fukawa K., Ito T., Matsumoto T., Uenishi H. and Mikawa S. (2015). Genome‐wide association QTL mapping for teat number in a purebred population of Duroc pigs. Anim. Genet. 46(5), 571-575.
Bakhtiarizadeh M.R., Mirzaei S., Norouzi M., Sheybani N. and Vafaei Sadi M.S. (2020). Identification of gene modules and hub genes involved in mastitis development using a systems biology approach. Front. Genet. 11, 1-7.
Butty A.M., Frischknecht M., Gredler B., Neuenschwander S., Moll J., Bieber A., Baes C.F. and Seefried F.R. (2017). Genetic and genomic analysis of hyperthelia in Brown Swiss cattle. J. Dairy Sci. 100(1), 402-411.
Chatterjee S.J., Halaoui R., Deagle R.C., Rejon C. and McCaffrey L. (2019). Numb regulates cell tension required for mammary duct elongation. Biol. Open. 8(5), 1-9.
Deniskova T., Dotsev A.V., Selionova M., Wimmers K., Reyer H., Kharzinova V.R., Brem G. and Zinovieva N.A. (2017). 696 Whole-genome single nucleotide polymorphism study of Romanov sheep. J. Anim. Sci. 95(4), 339-404.
Duan H., Xiao L., Hu J., Zhang Y., Zhao X., Ge W., Jiang Y., Song L., Yang S. and Luo W. (2019). Expression of oestrogen receptor., androgen receptor and progesterone nuclear receptor in sheep uterus during the oestrous cycle. Reprod. Domest. Anim. 54(10), 1305-1312.
Duijvesteijn N., Veltmaat J.M., Knol E.F. and Harlizius B. (2014). High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development. BMC. Genomics. 15(1), 1-2.
Dysin A.P., Barkova O.Y. and Pozovnikova M.V. (2021). The role of microRNAs in the mammary gland development., health., and function of cattle., goats., and sheep. Non-Coding. RNA. 7(4), 78-85.
Eydivandi S., Eghbalsaied S., Momen M., Khajouei E., Javanmard A. and Ghoreishifar S.M. (2022). Search for association between ovine wingless-type MMTV integration site family member (Wnt10A) genes with supernumerary teat in Ghezel and Romanov sheep. Iranian J. Appl. Anim. Sci. 12(2), 295-302.
Gagniac L., Rusidzé M., Boudou F., Cagnet S., Adlanmerini M., Jeannot P., Gaide N., Giton F., Besson A., Weyl A. and Gourdy P. (2020). Membrane expression of the estrogen receptor ERα is required for intercellular communications in the mammary epithelium. Development. 147(5), 182303-182311.
Gao X., Yao X., Li X., Liang Y., Liu Z., Wang Z., Li K., Li Y., Zhang G. and Wang F. (2021). Roles of WNT6 in sheep endometrial epithelial cell cycle progression and uterine glands organogenesis. Vet. Sci. 8(12), 316-321.
Ghaffarilaleh V., Javanmard A., Saberivand A., Asadzadeh N., Masoudi R., Barfourooshi H.J., Rashidi A. and Eghbalsaied S. (2022). Variation and frequency of supernumerary teats., litter size., histological features and the fibroblast growth factor 2 (FGF-2) gene expression pattern in goats. Theriogenology. 179, 141-148.
Jörg H., Meili C., Ruprecht O., Bangerter E., Burren A. and Bigler A. (2014). A genome-wide association study reveals a QTL influencing caudal supernumerary teats in Holstein cattle. Anim. Genet. 45(6), 871-873.
Kenny S. (2014). Investigation of prevalence of supernumerary teat in livestock. PhD. Thesis. University of Veterinary Medicine Budapest., Budapest, Hungary.
Lee J.B., Jung E.J., Park H.B., Jin S., Seo D.W., Ko M.S., Cho I.C., Lee J.H. and Lim H.T. (2014). Genome-wide association analysis to identify SNP markers affecting teat numbers in an F 2 intercross population between Landrace and Korean native pigs. Mol. Biol. Rep. 41, 7167-7173.
Mor A., Mondal S., Reddy I.J., Nandi S. and Gupta P.S. (2018). Molecular cloning and expression of FGF2 gene in pre-implantation developmental stages of in vitro-produced sheep embryos. Reprod. Domest. Anim. 53(4), 895-903.
Mueller S.O., Clark J.A., Myers P.H. and Korach K.S. (2002). Mammary gland development in adult mice requires epithelial and stromal estrogen receptor α. Endocrinology. 143(6), 2357-2365.
Peng W.F., Xu S.S., Ren X., Lv F.H., Xie X.L., Zhao Y.X., Zhang M., Shen Z.Q., Ren Y.L., Gao L. and Shen M. (2017). A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries). Anim. Genet. 48(5), 570-579.
Pértille F., Moreira G.C., Zanella R., Nunes J.D., Boschiero C., Rovadoscki G.A., Mourão G.B., Ledur M.C. and Coutinho L.L. (2017). Genome-wide association study for performance traits in chickens using genotype by sequencing approach. Sci. Rep. 7(1), 41748-41756.
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., De Bakker P.I., Daly M.J. and Sham P.C. (2007). PLINK, a tool set for whole-genome association and population-based linkage analyses. American. J. Hum. Genet. 81(3), 559-575.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Smołucha G., Gurgul A., Jasielczuk I., Kawęcka A. and Miksza-Cybulska A. (2021). A genome-wide association study for prolificacy in three Polish sheep breeds. J. Appl. Genet. 62, 323-326.
Wang L., Zhang Y., Zhang T., Zhang L., Yan H., Liu X. and Wang L. (2017). Genotyping by sequencing reveals a new locus for pig teat number. Anim. Genet. 48(4), 470-472.
Xu S.S., Gao L., Xie X.L., Ren Y.L., Shen Z.Q., Wang F., Shen M., Eyϸórsdóttir E., Hallsson J.H., Kiseleva T. and Kantanen J. (2018). Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front. Genet. 9, 118-125.
Zhang L., Peng F., Yu F., Wan L. and Zhou Z.Q. (2019). Expression of ESR1., PRLR., GHR., and IGF1R in mammary glands of Hu sheep with four teats. Czech J. Anim. Sci. 64(2), 49-58.
Zhou L., Zhao W., Fu Y., Fang X., Ren S. and Ren J. (2019). Genome-wide detection of genetic loci and candidate genes for teat number and body conformation traits at birth in Chinese Sushan pigs. Anim. Genet. 50(6), 753-756.