Energy Type and Amount in the Diets of Broiler Chickens: Effects on Performance and Duodenal Morphology
Subject Areas : Camelا. قهرمانی 1 , ع.ا. صادقی 2 * , س. حصارکی 3 , م. چمنی 4 , پ. شورنگ 5
1 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Deptartment of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Karaj, Iran
Keywords: energy, Performance, broiler chickens, duodenum morphology, soy oil,
Abstract :
The present study was conducted to investigate the effects of dietary energy sourcesandlevels on performance and small intestinal morphology in broiler chickens. A total of 600 one-day-old broiler chicks were randomly divided into five treatments with four replicates each. Chicks were fed diet based on corn as main energy source and energy level based on Cobb 500 manual instruction considered control group (C), basal diet with 3% lesser energy than control (T1), basal diet with 6% lesser energy than control (T2), basal diet based on corn and soy oil level according to Cobb 500 manual instruction (T3), basal diet based on corn and soy oil with 3% upper energy (T4) for 42 days. Results showed that chicks in T3 group had higher body weight, body weight gain and duodenum villus height compared to control group (C) and improved feed conversion ratio (FCR) at day 42 of age (P<0.05). Chicks in T2 group exhibited the lowest body weight (BW), body weight gain (BWG) and FCR but the highest feed intake (P<0.05). Feeding of diet T4 improved daily weight gain and duodenal villus height while caused concurrently increased FCR. Energy levels greater than Cobb recommendation significantly increased the villus height of the duodenum and decreased crypt depth compared to the control group (P<0.05). In order to achieve a higher weight more energy is needed than the recommended manual instruction for Cobb 500 but to have better feed conversion ratio the energy level recommended manual instruction is sufficient.
Cobb 500. (2012). Cobb Broiler Performance and Nutrient Supplement Guide. Cobb-Vantress Inc., Siloam Springs, Arkansas.
Cobb 500. (2010). Cobb Broiler Management Guide. Cobb-Vantress Inc., Siloam Springs, Arkansas.
Das G.B., HossainM.E. and Akbar M.A. (2014). Effects of different oils on productive performance of broiler. Iranian J. Appl. Anim. Sci. 4(1), 111-116.
Dairo F., Adesehinwa A.S.A.O.K., Oluwasola T.A. and Oluyemi J.A. (2010). High and low dietary energy and protein levels for broiler chickens. African J. Agric. Res. 5(15), 2030-2038.
Fan Y., Croom J., Christensen V., Black B., Bird A., Daniel B., Mcbride M. and Eisen E. (1997). Duodenal glucose uptake and oxygen consumption in turkey poulets selected for rapid growth. Poult. Sci. 76, 1738-1745.
Gartner P. and Hiatt J.L. (2001). Color Textbook of Histology. Saunders, Baltimore, Maryland.
Griffiths L., Leeson S. and Summers J.D. (1977). Influence of energy system and level of various soy oil sources on performance and carcass composition of broiler. Poult. Sci. 56, 1018-1026.
Houshmand M., Azhar K., Zulkifli I., Bejo M.H. and Kamyab A. (2011). Effects of non-antibiotic feed additives on performance, nutrient retention, gut ph, and intestinal morphology of broilers fed different levels of energy. J. Appl. Poult. Res. 20, 121-128.
Kamran Z.,Sarwar M., Nisa M., Nadeem M.A., Mahmood S., BarbarM.E. and Ahmed S. (2008). Effect of low protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age. Poult. Sci. 87, 468-474.
Leeson S., Caston L. and Summers J.D. (1996). Broiler response to diet energy. Poult. Sci. 75, 529-535.
Leeson S., Scott L. and Summers J.D. (2001). Scotts Nutrition of the Chicken. University book, Guelp, Canada.
Leeson S. and Summers J.D. (2005). Feeding Programs for Laying Hens. Commercial poultry nutrition. University books, Guelph, Ontario.
Min Y.N., Shi J.S., Wei F.X., Wang H.Y., Hou X.F., Niu Z.Y. and Liu F.Z. (2012). Effects of dietary energy and protein on growth performance and carcass quality of broilers during finishing phase. J. Anim. Vet. Adv. 11(19), 3652-3657.
Monfaredi A., Rezaei M. and Sayyahzadeh H. (2011). Effect of supplemental soy oil in low energy diets on some blood parameters and carcass characteristics of broiler chicks. South African J. Anim. Sci. 41, 24-32.
Nahashon S., Adefope N.N., Amenyenu A. and Wright D. (2005). Effects of dietary metabolizable energy and crude protein concentrations on growth performance and carcass characteristics of french guinea broilers. Poult. Sci. 84, 337-334.
Noy Y. and Sklan D. (1998). Yolk utilization in the newly hatched poultry. Br. Poult. Sci. 39, 446-451.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Samanya M. and Yamauchi K. (2002). Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. 133, 95-104.
Scaife J.R., Moyo J., Galbraith H., Michie W. and Carmpbell V. (1994). Effect of different dietary supplemental fats and oils on the tissue fatty acid composition and growth of female broilers. Br. Poult. Sci. 35, 107-118.
Soltan M. (2009). Influence of dietary glutamine supplementation on growth performance, small intestinal morphology, immune response and some blood parameters of broiler chickens. Int. J. Poult. Sci. 8, 60-68.
Spratt R.S., Mcbride B.W., Baylay H.S. and Leeson S. (1990). Energy metabolism of broiler breeder hens. 2. Contribution of tissues to total heat production in fed and fasted hens. Poult. Sci. 69, 1348-1356.
SPSS Inc. (2010). Statistical Package for Social Sciences Study. SPSS for Windows, Version 11. Chicago SPSS Inc.
Tarachai P. and Yamauchi K. (2000). Effects of luminal nutrient absorption, intra-luminal physical stimulation, and intravenous parenteral alimentation on the recovery responses of duodenal villus morphology following feed withdrawal in chickens. Poult. Sci. 79, 1578-1585.
Thompson K.L. and Applegate T.J. (2006). Feed withdraw alters small intestinal morphology and mucus of broilers. Poult. Sci. 85, 1535-1540.
Uni Z., Ganot S. and Sklan D. (1998). Post-hatch development of mucosal function in the broiler small intestine. Poult. Sci. 77, 75-82.
Vieira S.L., Viola E.S., Berres J., Olmos A.R., Conde O.R.A. and Almeida J.G. (2006). Performance of broilers fed increased levels energy in the pre-starter diet and on subsequent feeding programs having with acidulated soybean soap stock supplementation. Brazilian J. Poult. Sci. 8(1), 55-61.
Wang X., Peebles E.D. and Zhai W. (2014). Effects of protein source and nutrient density in the diets of male broilers from 8 to 21 days of age on their subsequent growth, blood constituents, and carcass compositions. Poult. Sci. 93, 1463-1474.
Wang X., Peebles E.D., Morgan T.W., Harkess R.L. and Zhai W. (2015). Protein source and nutrient density in the diets of male broilers from 8 to 21 d of age: effects on small intestine morphology. Poult. Sci. 94, 61-67.
Xu Z.R., Hu C.H., Xia M.S., Zhan X.A. and Wang M.Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82, 1030-1036.
Yaghobfar A., Rezaian M., Ashrafi-helan J., Barin H., Fazaeli S. and Sharifi D. (2006). The effect of hull-less barley dietary on the activity of gut microflora and morphology small intestinal of layer hens. Pakistan J. Biol. Sci. 9(4), 659-666.
Yang J.P., Yao J.H. and Liu Y.R. (2007). Effect of feed restriction on growth performance and carcass characteristics of broilers chickens. Acta Agric. Boreali-Occidentalis Sinica. 16, 51-56.
Zai W., Peebles E.D., Zumwalt C.D., Mejia L. and Corozo A. (2013). Effects of dietary amino acid density regimens on growth performance and meat yield of Cobb × Cobb 700 broilers. J. Appl. Poult. Res. 22, 447-460.
Ziegler T.R., Evans M.E., Fernandez-Estivariz C. and Jones D.P. (2003). Trophic and cytoprotective nutrition for intestinal adaptation, muocosal repair and barrier function. Annu. Rev. Nutr. 23, 229-261.