Investigation of GDF9 and BMP15 Polymorphisms in Mehraban Sheep to Find the Missenses as Impact on Protein
Subject Areas : Camelا. احمدی 1 , ف. افراز 2 , ر. طالبی 3 , ع. فرحآور 4 , س.م.ف. وحیدی 5
1 - Department of Animal Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
2 - Department of Genomics and Animal, Agricultural Biotechnology Research Institute (ABRI), North branch, Rasht, Iran
3 - Department of Animal Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
4 - Department of Animal Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
5 - Department of Genomics and Animal, Agricultural Biotechnology Research Institute (ABRI), North branch, Rasht, Iran
Keywords: Sheep, <, i>, BMP15<, /i>, , functional interaction, <, i>, GDF9<, /i>, , missense, protein structure,
Abstract :
Utilization of fecundity genes such as GDF9 and BMP15 can help improve reproductive traits in sheep breeding programme. To evaluate effects of missense mutations on protein function, the polymorphisms of GDF9 and BMP15 genes were screened in twelve mehraban sheep using DNA sequencing, followed by protein structure modeling. Six single nucleotide polymorphism (SNPs) known as FecG mutations (G1-G6), were detected in exons 1 and 2 of GDF9 gene. Mutations of G1 (GDF9 exon 1 g.2118 G>A), G4 (GDF9 exon 2 g.3451 T>C) and G6 (GDF9 exon 2 g.3974 G>A) have shown amino acid substitution. None polymorphism was detected in exon 1 and exon 2 of BMP15 gene. Based on identified polymorphisms, individuals were classified into three haplotypes of wild haplotype (without mutation), haplotype A (simultaneous mutations of G1, G2, G3 and G4) and haplotype B (simultaneous mutations of G5 and G6). The 3D-structure of GDF9 protein in A and B haplotypes was rotated 90˚ and 45˚ than wild haplotype, respectively. The missenses G1/p.Arg87His, G4/p.Glu241Lys and G6/p.Val332Ile variants were benign. However both the missenses of G7/p.Val371Met and G8/p.Ser315Phe were probably damaging. Phylogenetic tree of GDF9 gene revealed that individuals with A and B haplotypes were distinct from wild haplotypes with bootstrapping values of 63 and 76, respectively. In conclusion, GDF9 protein in A and B haplotypes showed a higher performance than wild haplotype due to synergism effects of simultaneous mutations. These types of mutations with effect on turn and helix of GDF9 conservative regions showed physical and functional interaction with TGFβ proteins.
Abdoli R., Zamani P., Deljou A. and Rezvan H. (2013). Association of BMPR1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes. Genetic. 524, 296-303.
Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S. and Sunyaev S.R. (2010). A method and server for predicting damaging missense mutations. Nat. Methods. 7, 248-249.
Akbarpour M., Houshmand M., Ghorashi A. and Hayatgheybi H. (2008). Screening for FecGH mutation of growth differentiation factor 9 gene in Iranian Ghezel sheep population. Int. J. Fertil. Steril. 2, 139-144.
Barzegari A., Atashpaz S., Ghabili K., Nemati Z., Rustaei M. and Azarbaijani R. (2010). Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran. Reprod. Domest. Anim. 45, 666-669.
Bodin L., Di Pasquale E., Fabre S., Bontoux M., Monget P., Persani L. and Mulsant P. (2007). A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology. 148, 393-400.
Bodin L., SanCristobal M., Lecerf F., Mulsant P., Bibe B., Lajous D., Belloc J.P., Eychenne F., Amigues Y. and Elsen J.M. (2002). Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep. Genet. Sel. Evol. 34, 447-464.
Bradford G.E., Quirke J.F., Sitorus P., Inounu I., Tiesnamurti B., Bell F.L., Fletcher I.C. and Torell D.T. (1986). Reproduction in Javanese sheep: evidence for a gene with large effect on ovulation rate and litter size. J. Anim. Sci. 63, 418-431.
Demars J., Fabre S., Sarry J., Rossetti R., Gilbert H., Persani L., Tosser-Klopp G., Mulsant P., Nowak Z., Drobik W., Martyniuk E. and Bodin L. (2013). Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet. 9, 1003482.
Drouilhet L., Lecerf F., Bodin L., Fabre S. and Mulsant P. (2009). Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep. Anim. Genet. 40, 804-812.
Drouilhet L., Mansanet C., Sarry J., Tabet K., Bardou P., Woloszyn F., Lluch J., Harichaux G., Viguié C., Monniaux D., Bodin L., Mulsant P. and Fabre S. (2013). The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genet. 9, 1003809.
Eghbalsaied S., Amini H., Shahmoradi S. and Farahi M. (2014). Simultaneous presence of G1 and G4 mutations in growth differentiation factor 9 gene of Iranian sheep. Iranian J. Appl. Anim. Sci. 4, 781-785.
Galloway S.M., McNatty K.P., Cambridge L.M., Laitinen M.P., Juengel J.L., Jokiranta T.S., McLaren R.J., Luiro K., Dodds K.G., Montgomery G.W., Beattie A.E., Davis G.H. and Ritvos O. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279-283.
Ghaffari M., Nejati-Javaremi A. and Rahimi G. (2009). Detection of polymorphism in BMPR-IB gene associated with twining in Shal sheep using PCR-RFLP method. Int. J. Agric. Biol. 11, 97-99.
Hanrahan J.P., Gregan S.M., Mulsant P., Mullen M., Davis G.H., Powell R. and Galloway S.M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900-909.
Javanmard A., Azadzadeh N. and Esmailizadeh A.K. (2011). Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds. Vet. Res. Commun. 35, 157-167.
Jones D.T., Taylor W.R. and Thornton J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275-282.
Juengel J.L., Bodensteiner K.J., Heath D.A., Hudson N.L., Moeller C.L., Smith P., Galloway S.M., Davis G.H., Sawyer H.R. and McNatty K.P. (2004). Physiology of GDF9 and BMP15 signalling molecules. Anim. Reprod. Sci. 83, 447-460.
Kasiriyan M.M., Hafezian S.H. and Hassani N. (2011). Genetic polymorphism BMP15 and GDF9 genes in Sangsari sheep of Iran. Int. J. Gen. Mol. Biol. 3, 31-34.
Mi L.Z., Brown C.T., Gao Y., Tian Y., Le V.Q., Walz T. and Springer T.A. (2015). Structure of bone morphogenetic protein 9 procomplex. Proc. Natl. Acad. Sci. 112, 3710-3721.
Monestier O., Servin B., Auclair S., Bourquard T., Poupon A., Pascal G. and Fabre S. (2014). Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono and polyovulating species. Biol. Reprod. 91, 83-91.
Monteagudo L.V., Ponz R., Tejedor M.T., Lavina A. and Sierra I. (2009). A 17 bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Anim. Reprod. Sci. 110, 139-146.
Moore R.K. and Shimasaki S. (2005). Molecular biology and physiological role of the oocyte factor, BMP15. Mol. Cell. Endocrinol. 234, 67-73.
Moradband F., Rahimi G. and Gholizadeh M. (2011). Association of polymorphism in fecundity genes of GDF9, BMP15 and BMPR1B with litter size in Iranian Baluchi sheep. Asian Australas. J. Anim. Sci. 24, 1179-1183.
Mullen M.P., Hanrahan J.P., Howard D.J. and Powell R. (2013). Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 ( FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge sheep. PLoS One. 8, 53172.
Nicol L., BishopS.C., Pong-Wong R., Bendixen C., Holm L.E., Rhind S.M. and McNeilly S.A. (2009). Homozygosity for a single base-pair mutation in the oocyte specific GDF9 gene results in sterility in Thoka sheep. Reproduction. 138, 921-933.
Notter D.R. (2008). Genetic aspects of reproduction in sheep. Reprod. Domest. Anim. 43, 122-128.
Potki P., Mirhoseini S.Z., Afraz F. and Vahidi S.M.F. (2015). Study of polymorphism in GDF9 gene in Moghani and Farahani sheep breeds using PCR-RFLP technique. Pp. 24-26 in Proc. 1st Int. and 9th Natl. Biotechnol. Congr. Islamic Repub. Isfahan, Iran.
Pramod K.R., Sharma S.K., Kumar R. and Rajan A. (2013). Genetics of ovulation rate in farm animals. Vet. World. 6, 833-838.
Reva B., Antipin Y. and Sander C. (2011). Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic. Acids. Res. 39, 118.
Silva B.D., Castro E.A., Souza C.J., Paiva S.R., Sartori R., Franco M.M., Azevedo H.C., Silva T.A.S.N., Vieira A.M.C., Neves J.P. and Melo E.O. (2011). A new polymorphism in the growth and differentiation factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim. Genet. 42, 89-92.
Souza C.J.H., McNeilly A.S., Benavides M.V., Melo E.O. and Moraes J.C.F. (2014). Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim. Genet. 45, 732-739.
Vage D.I., Husdal M., Matthew P.K., Klemetsdal G. and Boman I.A. (2013). A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genet. 14, 1-9.
Wilson T., Wu X.Y., Juengel J.L., Ross I.K., Lumsden J.M., Lord E.A., Dodds K.G., Walling G.A., McEwan J.C. and O’Connell A.R. (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64, 1225-1235.
Zamani P., Abdoli R., Deljou A. and Rezvan H. (2015). Polymorphism and bioinformatics analysis of growth differentiation factor 9 gene in Lori sheep. Ann. Anim. Sci. 15, 337-348.