Searching for Possible Association between Six Microsatellite Markers and Suppression of Mite Reproduction (SMR) Trait in Honey Bees
Subject Areas : CamelM. Elmi 1 , S.A. Rafat 2 , S. Alijani 3 , A. Javanmard 4 , G. Elyasi 5 , V. Danesh 6 , S. Shirmohammadi 7 , L. Ahmadzadeh-Gavahan 8
1 - Department of Animal Science, East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
5 - Department of Animal Science, East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Tabriz, Iran
6 - Department of Animal Science, East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Tabriz, Iran
7 - Department of Animal Science, East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Tabriz, Iran
8 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Keywords: Honey bee, Microsatellite markers, Varroa mite, suppression of mite reproduction,
Abstract :
There are several candidates' heritable traits in honey bees that can be selected to make colonies genetically resistant to Varroa mites. This study was conducted to find an association between six microsatellite markers and suppression of the mite reproduction in honey bees. The study included two-phases. In the first phase, phenotypic measurement was done based on Varroa mite reproduction success and included direct counting of the number of cells containing the mother mite that have successfully reproduced (fertility), the total number of offspring, and the number of offspring mites per mother mite (fecundity). In the second molecular genotyping phase, the polymerase chain reaction (PCR) was amplified using specific primers to investigate the polymorphism of six primers. The results showed that HQ7622 and KO430 loci expressed the highest (6 alleles) and lowest (1 allele) number of alleles, respectively. Interestingly, the HQ7622 microsatellite marker was significantly associated with all studied traits (P<0.05). The effect of the HQ7691 locus on the number of mother mites and the rate of mite infestation was significant (P<0.05). Furthermore, UN086 didn’t affect any of the measured phenotypic characteristics. The UN334d locus significantly affected the number of mother mites and the rate of mite infestation (P<0.05). Effect of UN391 locus on maternal mite count (P<0.05), offspring mite count (P<0.01), total mite count (P<0.01), fertility (P<0.05), and the rate of mite infestation (P<0.05) was significant. On this basis, we demonstrated the importance of certain microsatellite markers for the genetic identification of bee colony resistance to Varroa mites.
Behrens D., Huang Q., Geßner C., Rosenkranz P., Frey E., Locke B., Moritz R.F. and Kraus F.B. (2011). Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 1, 451-458.
Boot W.J., Calis J.N., Beetsma J., Hai D.M., Lan N.K., Toan T.V., Trung L.Q. and Minh N.H. (1999). Natural selection of Varroa jacobsoni explains the different reproductive strategies in colonies of Apis cerana and Apis mellifera. Exp. Appl. Acarol. 23, 133-144.
Dietemann V., Nazzi F., Martin S.J., Anderson D.L., Locke B., Delaplane K.S., Wauquiez Q., Tannahil C., Frey E., Ziegelmann B., Rosenkranz P. and Ellis J.D. (2013). Standard methods for varroa research. J. Apic. Res. 52, 1-54.
Fries I., Camazine S. and Sneyd J. (1994). Population dynamics of Varroa jacobsoni: A model and a review. Bee World. 75, 5-28.
Garrido C., Rosenkranz P., Paxton R.J. and Gonçalves L.S. (2003). Temporal changes in Varroa destructor fertility and haplotype in Brazil. Apidologie. 34, 535-541.
Gebremedhn H., Claeys Bouuaert D., Asperges M., Amssalu B., De Smet L. and de Graaf D.C. (2023). Expression of molecular markers of resilience against Varroa destructor and bee viruses in Ethiopian honey bees (Apis mellifera simensis) focussing on olfactory sensing and the RNA interference machinery. Insects. 14, 436-445.
Harbo J.R. and Harris J.W. (1999). Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J. Econ. Entomol. 92(2), 261-265.
Hummel T., Krukkert K., Roos J., Davis G. and Klämbt C. (2000). Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron. 26, 357-370.
Jünger M.A., Rintelen F., Stocker H., Wasserman J.D., Végh M., Radimerski T., Greenberg M. and Hafen E. (2003). The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2, 1-17.
Kirrane M.J., De Guzman L.I., Rinderer T.E., Frake A.M., Wagnitz J. and Whelan P.M. (2011). Asynchronous development of honey bee host and Varroa destructor (Mesostigmata: Varroidae) influences reproductive potential of mites. J. Econ. Entomol. 104, 1146-1152.
Lee K.V., Moon R.D., Burkness E.C., Hutchison W.D. and Spivak M. (2010). Practical sampling plans for Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies and apiaries. J. Econ. Entomol. 103, 1039-1050.
Locke B. and Fries I. (2011). Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie. 42, 533-542.
Mondet F., Parejo M., Meixner M.D., Costa C., Kryger P., Andonov S., Servin B., Basso B., Bienkowska M., Bigio G., Cauia E., Cebotari V., Dahle B., Maja Draži´c M., Hatjina F., Kovaˇci´c M., Kretavicius J., Lima A.S., Panasiuk B., Pinto M.A., Uzunov A., Wilde J. and Büchler R. (2020). Evaluation of suppressed mite reproduction (SMR) reveals potential for varroa resistance in european honey bees (Apis mellifera L.). Insects. 11, 595-602.
Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D. and Le Conte Y. (2008). Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genom. 9, 1-11.
Nijhout H.F. (2003). The control of growth. Development. 130, 5863-5867.
Rosenkranz P. (1999). Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud in South America. Apidologie. 30, 159-172.
Rosenkranz P. and Garrido C. (2004). Volatiles of the honey bee larva initiate oogenesis in the parasitic mite Varroa destructor. Chemoecology. 14, 193-197.
Rosenkranz P., Aumeier P. and Ziegelmann B. (2010). Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, 96-119.
Sainsbury J., Nemeth T.E., Baldo M., JochymI M., Felman C., Goodwin M., Lumsden M., Pattemore D. and Jeanplong F. (2022). Marker assisted selection for Varroa destructor resistance in New Zealand honey bees. PloS One. 17(9), e0273289.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Sepehri B., Alijani S., Javanmard A., Johnmohammadi H. and Hasanpur K. (2023). Molecular screening of varroa resistant trait of honey bee colonies based on NorpA2 candidate gene polymorphism: A genetic case control study. Iranian J. Appl. Anim. Sci. 13(1), 177-185.
Sim C. and Denlinger D.L. (2008). Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl. Acad. Sci. 105, 6777-6781.
Solignac M., Vautrin D., Baudry E., Mougel F., Loiseau A. and Cornuet J.M. (2004). A microsatellite-based linkage map of the honeybee, Apis mellifera L. Genetics. 167(1), 253-262.
Willcox B.J., Donlon T.A., He Q., Chen R., Grove J.S., Yano K., Masaki K.H., Willcox D.C., Rodriguez B. and Curb J.D. (2008). FOXO3A genotype is strongly associated with human longevity. Proc. Natl. Acad. Sci. 105, 13987-13992.
Wu Q. and Brown M.R. (2006). Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 51, 1-24.