Cassava Fiber Meal and Roxazyme® G2 Supplementation on the Performance and Haemato-Biochemical Profile of Broiler Chickens
Subject Areas : CamelM.H. Ogunsipe 1 * , J.O. Agbede 2 , F.A. Igbasan 3 , O.D. Olotuntola 4
1 - Department of Agricultural Science, Adeyemi Federal University of Education, Ondo, Nigeria
2 - Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria
3 - Department of Animal Production and Health, Olusegun Agagu University of Science and Technology, Okitipupa, Nigeria
4 - Department Animal Science, Adekunle Ajasin University, Akungba Akoko, Nigeria
Keywords: weight gain, broilers, Serum, Blood indices, cassava waste, exo-enzyme,
Abstract :
This study assessed the effects of cassava fiber meal (CFM) and Roxazyme® G2 supplementation on performance and haemato-biochemical indices of broiler chickens in a feeding trial that lasted for 56 days. A batch of 360 day-old male Arbor Acres chicks of mean weight 390±8.04 g was allotted to 12 dietary treatments of 5 replications of 6 birds to a replicate in a completely randomized design of 4 × 3 factorial treatments. The CFM was substituted for maize at 0, 20, 40, and 60% levels. Each level was supplemented with Roxazyme® G2 at 0, 100, and 200 mg kg-1. The growth performance, carcass traits, relative organ weights, and haemato-biochemical profile of the broiler chickens were analyzed using General Linear Model (GLM) procedures. Results showed that CFM up to 40% did not decrease weight gain but at 60% substitution level, weight gain decreased significantly (P<0.05) during the starter and finisher period. Broiler chickens fed diets containing 60% CFM had lower eviscerated weight but higher liver and kidney weights compared with those fed the control and up to 40% CFM in place of maize. Eosinophil and aspartate aminotransferase (AST) are the haemato-biochemical parameters that were influenced (P<0.05) at higher CFM substitution with or without enzyme supplementation. The non-significant interaction in the performance and haemato-biochemical parameters of the birds showed the independency of the two factors (CFM and Roxazyme® G2 supplementation) under consideration. CFM up to 40% substitution for maize with or without Roxazyme® G2 is safe as an energy source in broiler chicken diet.
Addass P.A., David D.I., Edward A., Zira K.E. and Midak A. (2012). Effect of age, sex and management system on some haematological parameters of intensively and semi-intensively kept chicken in Mubi, Adamawa State, Nigeria. Iranian J. Appl. Anim. Sci. 2(3), 277-282.
Adeyeye S.A., Ayodele S.O., Oloruntola O.D. and Abgede J.O. (2019). Processed cocoa pod husk dietary inclusion: effects on the performance, carcass, haematogram, biochemical indices, antioxidant enzyme and histology of liver and kidney in broiler chicken. Bull. Nat. Res. Cent. 43(53), 1-9.
Agbede J.O. (2019). Alternative feed resources: Key to profitable livestock enterprise in Nigeria. Inaug. Lec. Ser. 109, 5-60.
Agwunobi L.N. (1999). Performance of broiler chicks fed sweet potato meal (Ipomea batatas) diet. Trop. Anim. Health. Prod. 31, 383-389.
Al-Saad S.R., Abbod M.F. and Younes A.A. (2014). Effects of some growth promoters on blood hematology and serum composition of broiler chickens. Int. J. Agric. Res. 9(5), 265-270.
Ameen S.A., Adedeji O.S., Akingbade A.A., Olayeni T.B., Ojedapo L.O. and Aderinola O.A. (2007). The effects of different feeding regimes on haematological parameters and immune status of commercial broilers in the derived savannah zone of Nigeria. Pp. 176-179 in Proc. 32nd Ann. Conf. Nigeria Soc. Anim. Prod., Calabar, Nigeria.
AOAC. (2002). Official Methods of Analysis. 17th Ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.
Aro S.O. and Aletor V.A. (2012). Proximate composition and amino acid profile of differently fermented cassava tuber wastes collected from a cassava starch producing factory in Nigeria. Livest. Res. Rural Dev. Available at: www.lrrd.org/lrrd24/3/aro/24040.htm.
Aro S.O., Ogunwale F.F. and Falade O.A. (2013). Blood viscosity of finisher cockerels fed dietary inclusions of fermented cassava tuber wastes. Pp. 74-81 in Proc. 18th Ann. Conf. Nigeria Soc. Anim. Prod., Calabar, Nigeria.
Aro S.O., Aletor V.A., Tewe O.O. and Agbede J.O. (2010). Nutritional potentials of cassava tuber wastes: A case study of a cassava starch processing factory in south-western Nigeria. Livest. Res. Rural Dev. Available at: www.lrrd.org/lrrd22/11/aro22213.htm.
Arogbodo J.O., Osho I.B., Falusi O.B. and Awonoyi T.A.M. (2020). Haematological indices of Salmonella gallinarum (Gr. D1-1, 9, 12) infected broiler chickens treated with ethanolic leaf extract of Chrysophyllum albidum (G. Don). Nigerian J. Anim. Prod. 47(1), 65-80.
Aya V.E., Ayanwale B.A., Ijaiya A.T. and Aremu A. (2013). Haematological and serum biochemistry indices of broiler chickens fed rumen filtrate fermented palm kernel meal based diet. Pp. 329-331 in Proc. 18th Ann. Conf. Nigeria Soc. Anim. Prod., Calabar, Nigeria.
Ayaşan T. (2010). Use of cassava products in animal nutrition. J. Agric. Fac. Gaziosmanpasa Univ. 27(1), 73-83.
Ayodele S.O., Oloruntola O.D. and Agbede J.O. (2016). Effect of Alchornea cordifolia leaf meal inclusion and enzyme supplementation on performance and digestibility of rabbits. World Rabbit Sci. 24, 201-206.
Baer D.J., Rumpler W.V., Miles C.W. and Fahey G.C. (1997). Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J. Nut. 127, 579-586.
Baker F.J. and Silverton R.E. (1985). Introduction to Medical Laboratory Technology. Butterworth, England.
Banerjee G.C. (2012). Textbook of Animal Husbandry, Eight Edition. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
Bohani B.A. and Koupai-Abyazani M.R. (1994). Flavonoids and condensed tannins from leaves of Hawaiian Vaccinium reticulatum and Vaccinium calycinum (Ericaceae). Pac. Sci. 48(4), 458-463.
Bounous D.I. and Stedman N.L. (2000). Norman avain haematology: Chicken and turkey. Pp. 1147-1154 in Schalm’s Veterinary Haematology. B.F. Feldman, J.G. Zinkl and N.C Jain, Eds. Williams and Wilkison, Philadelphia, USA.
Buyse J., Jassens K., Van Der Geyten S.P., Van A., Decuypere E. and Darras V.M. (2002). Pre- and postprandial changes in plasma hormone and metabolite levels and hepatic deiodinase activities in meal-fed broiler chickens. British J. Nutr. 88, 641-653.
Cereda M.P. and Takahashi M. (1996). Cassava wastes: Their characterization and uses and treatment in Brazil. Pp. 54-61 in Cassava Flour and Starch: Progress in Research and Development CIAT Publication n° 271. D. Dufour, G.M. O'Brien and R. Best, CIAT Publication, CIAT.
Duncan D.B. (1955). Multiple range and multiple F-test. Biometrics. 11, 1-42.
Etim N.A.N., Akpabio U., Okpongete V. and Offiong E.E.A. (2014). Do diets affect haematological parameters of poultry? British J. Appl. Sci. Technol. 4(13), 1952-1965.
FAO. (2019). Guidelines for the Molecular Genetic Characterization of Animal Genetic Resources. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Fernandes T., Zambom M.A., Castagnara D.D., Souza L.C., Damasceno D.O. and Schmidt E.L. (2015). Use of dried waste of cassava starch extraction for feeding lactating cows. Ann. Brasilian Acad. Sci. 87(2), 1101-1111.
Gulland F.M.D. and Hawkey C.M. (1990). Avain haematology. Vet. Ann. 30, 126-136.
Gylstorff I. (1983). Blut, Blutbildung und Blutkreislauf. Pp. 280-393 in Handbuch der Geflugelphysiologie. A. Mehner and W. Hartfiel, Eds. Veb Gustav Fisher Verlag, Jena, Germany.
Henry Y. (1971). Effects of nutritionals de l’incorporation de cellulose purfice dans regime du porc en croissance. Arch. Zootec. 19, 117-121.
Ilo S.U., Onwusika A.I., Nnajiofor N.W. and Ezenwosu C. (2019). Haematological and serum biochemical characteristics of broiler finisher fed diets containing cassava peel meal. Pp. 184-187 in Proc. 44th Ann. Conf. Nigeria Soc. Anim. Prod., Calabar, Nigeria.
Jain N.C. (1986). Schalm’s Veterinary Hematology. Lea and Febiger, 600. Washington square, Philadelphia, USA.
Jain N.C. (1993). Essential of Veterinary Haematology. Publisher Lea and Ferbiger, Philadelphia, USA.
Kadiri H.E. and Asagba S.O. (2015). The biochemical effects of cyanide on the activity of the transaminases and alkaline phosphatase in broilers (Gallus domesticus). American J. Biochem. 5(2), 23-29.
Kececi T. and Col R. (2011). Haematological and biochemical values of the blood of pheasants (Phasianus colchicus) of different ages. Turkish J. Vet. Anim. Sci. 35, 149-156.
Keenan H.A., Doria A., Aiello LP. and King G.L. (2006). Positivity of C-peptide, GADA and IA2 antibodies in type 1 diabetic patients with extreme duration. Diabetes. 55, 65-71.
Lakurbe O.A., Doma U.D., Bello K.M. and Abubakar M. (2018). Haematology and serum biochemical indices of broiler chickens fed sorghum SK-5912 (Sorghum bicolor) variety as a replacement for maize. Nigirian J. Anim. Prod. 45(3), 242-247.
Makkar A.O.S. and Goodchild A.V. (1996). Quantification of tannin. A Laboratory Manual. International Centre for Agriculture Research in the Dry Area (ICARDA) Aleppo, Syria.
Maps-Street View. (2015). WebMD. https://mapstreetview.com.
Meluzzi A., Primiceri G., Giordani R. and Fabris G. (1992). Determination of blood constituents’ reference values in broilers. Poult. Sci. 71, 337-345.
Mirtuka B.M. and Rawnsley H.M. (1997). Clinical, Biochemical and Haematological Reference Value in Normal Animals. Mason Publishing Company, New York.
Nanbol D.L., Boniface N.D., Helen D.N., Charity A.A., Deborah M.A., Peterside R.K. and Mary M. (2016). Establishment of reference values for some biochemical and haematological parameters for broilers and layers in plateau state, Nigeria. Vom J. Vet. Sci. 11, 30-35.
Nemi C.J. (1993). Essential of Veterinary Haematology, Publisher Lea and Febiger, Philadelphia, USA.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Ogunsipe M.H., Adejumo J.O., Agbede J.O. and Asaniyan E.K. (2015). Effect of Roxazyme® G2G supplementation on cassava plant meal fed to broiler chickens. Livest. Res. Rural Dev. Available at: http://www.lrrd.org/lrrd27/12/ogun27240.htm.
Ogunsipe M.H. (2014). Effect of poultry litter with or without enzyme supplementation on the growth performance, nutrient digestibility and economy of rabbit production. Int. J. Livest. Prod. 5(2), 23-29.
Ogunsipe M.H. (2017). Dietary effects of cassava powder and Roxazyme® G2G on growth performances, haematological profile and serum lipid of broiler chicks. Int. J. Adv. Agric. Res. 5, 1-9.
Oloruntola O.D., Ayodele S.O., Adeyeye S.A., Ogunsipe M.H., Daramola O.T. and Ayedun E.S. (2018a). Effect of pawpaw leaf meal and multi-enzyme supplementation in the diet on performance, digestibility and oxidative enzyme status of rabbits. J. Basic Appl. Zool. 79, 26-33.
Oloruntola O.D., Agbede J.O., Onibi G.E., Igbasan F.A., Ogunsipe M.H. and Ayodele S.O. (2018b). Rabbits fed fermented cassava starch residue II: Enzyme supplementation influence on performance and health status. Arch. Zootec. 67(260), 588-595.
Owen O.J. and Amakiri A.O. (2012). Assessment of calcium, phosphorus and enzymes of broiler finisher chickens’ fed with bitter leaf (Vernonia amygdalina) meal diets. UDO Agríc. 12(1), 207-211.
Oyewole N.O., Akinyele S.A. and Ogunsipe M.H. (2020). Effect of cassava pulp substituting maize on growth performance and haemato-biochemical attributes of broiler chickens. Livest. Res. Rural Dev. Available at: http://www.lrrd.org/lrrd32/11/moogu32174.html.
Rao A.C., Maya M.M., Duque MC., Tohume Allen A.C. and Bonierable M.W. (1997). AFLP analysis of relationships among cassava and other Manihot species. Theor. Appl. Genet. 95, 741-750.
Ravindran V. (1995). Performance of broiler chicks fed sweet potato meal (Ipomea batatas) diet. Trop. Anim. Prod. 31, 383-389.
SPSS Inc. (2006). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc., USA.
Sunmola T.A., Tuleum C.D. and Oluremi O.I.A. (2019). Growth performance, blood parameters and production cost of broiler chickens fed dietary sweet orange meal with or without enzyme addition. Nigerian J. Anim. Prod. 46(1), 37-50.
Swennen Q., Janssens GPJ., Millet S., Vansant G., Decuypere E. and Buyse J. (2005). Effect of substitution between fat and protein on feed intake and its regulatory mechanisms in broiler chickens: Endocrine functioning and intermediary metabolism. Poult. Sci. 84, 1051-1057.
Talebi A., Asri-Rezaei S., Rozeh-Chai R. and Sahraei R. (2005). Comparative studies on haematological values of broiler strains (Ross, Cobb, Arbor-acres, Arain). Int. J. Poult. Sci. 4(8), 573-579.
Tucker L.A. and Thomas K.S. (2009). Increasing total fiber intake reduces risk of weight and fat gains in women. J. Nutr. 139, 576-581.
Ukorebi B.A., Akpet S.O. and Gbose P.N. (2019). Haematology, serum biochemistry and organ histopathology of broiler chickens fed graded dietary levels of Gongronema latifolia (Utasi). Nigerian J. Anim. Prod. 46(2), 164-175.
Valchev I., Kanakov D., Hristov T.S., Lazarov L., Binev R., Grozeva N. and Nikolov Y. (2014). Investigations on the liver function of broiler chickens with experimental aflatoxicosis. Bulgarian J. Vet. Med. 17(4), 302-313.
Young S.M. and Greaves J.E. (1940). Influence of variety and treatment on phytin content of wheat. J. Food Sci. 5(1), 103-108.