Investigation of the Effects of Essential Amino Acids on Overexpression of the Vg and Sod Gene in Apis mellifera
Subject Areas : CamelS.M. Mortazavi 1 , م. چمنی 2 * , M. Amin-Afshar 3 , A.A. Sadeghi 4 , G. Tahmasbi 5
1 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - گروه علوم دامی، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
3 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Department of Honeybee, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
Keywords: essential amino acids, Vitellogenin, <i>Apis mellifera</i>, epigenetics, mitochondrial Mn superoxide dismutase,
Abstract :
Honeybee immunity and health can be significantly affected by protein nutrition. Essential amino acids have significant effects on animal health, resistance to diseases and survival. The aim of this study was to evaluate the potential of a number of dietary amino acids (lysine, methionine and threonine) to increase honeybees’ life span. To do so, 78 honeybee hives were studied divided into13 groups (6 hives each) with different concentrations of dietary amino acids. Parameters of honey and pollen production, winter survival, number of brood and mature bees in each group were evaluated. Moreover, expression of genes for immunity-related peptides (Vg and Sod) was compared among groups using real time polymerase chain reaction (PCR). The results revealed a significant effect of the different concentrations of amino acids on the parameters studied (p < 0.0001). The honeybees fed with 1.51 g lysine, 0.3 g methionine and 0.572 g threonine at each hive showed the highest levels of Vg and Sod expression compared to other groups (p < 0.0002). Therefore, our results strongly suggest that honey production could be increased by extending the life span of honeybees through the use of essential amino acids in their diet.
Alaux C., Dantec C., Parrinello H. and Le Conte Y. (2011). Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genom. 12, 496-502.
Alaux C., Ducloz F., Crauser D. and Le Conte Y. (2010). Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562-565.
Antunez K., Anido M., Branchiccela B., Harriet J., Campa J., Invernizzi C., Santos E., Higes M., Martín-Hernández R. and Zunino P. (2015). Seasonal variation of honeybee pathogens and its association with pollen diversity in Uruguay. Microb. Ecol. 70(2), 522-533.
Arganda S., Bouchebti S., Bazazi S., Le Hesran S., Puga C., Latil G., Simpson S.J. and Dussutour A. (2017). Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc. Royal Soc. 284(1846), 1-9.
Basualdo M., Barraga ´n S. and Antu ´nez K. (2014). Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees. Environ. Microbiol. Rep. 6, 396-400.
Bonoan R.E., O’Connor L.D. and Starks P.T. (2018). Seasonality of honey bee (Apis mellifera) micronutrient supplementation and environmental limitation. J. Insect Physiol. 107, 23-28.
Brodschneider R. and Crailsheim K. (2010). Nutrition and health in honey bees. Apidologie. 41, 278-294.
Czekońska K., Chuda-Mickiewicz B. and Samborski J. (2015). Quality of honeybee drones reared in colonies with limited and unlimited access to pollen. Apidologie. 46, 1-9.
DeGrandi-Hoffman G., Chen Y., Huang E. and Huang M.H. (2010). The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera). J. Insect Physiol. 56, 1184-1191.
DeGrandi-Hoffman G., Chen Y., Rivera R., Carroll M., Chambers M., Hidalgo G, Calle S., Azzouz-Olden F., Meador C., Snyder L. and Ziolkowski N. (2016). Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie. 47, 186-196.
DeGrandi-Hoffman G., Wardell G., Ahumada-Segura F., Rinderer T., Danka R. and Pettis J. (2008). Comparisons of pollen substitute diets for honey bees: Consumption rates by colonies and effects on brood and adult populations. J. Apicul. Res. 47(4), 265-270.
Di Pasquale G., Salignon M., Conte Y.L., Belzunces L.P., Decourtye A., Kretzschmar A., Suchail S., Brunet J.L. and Alaux C. (2013). Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PloS One. 8, e72016.
Eyer M., Dainat B., Neumann P. and Dietemann V. (2017). Social regulation of ageing by young workers in the honey bee, Apis mellifera. Exp. Gerontol. 87, 84-91.
Gaál T., Riviczeyné-Szabó P., Stadler K., Jakus J., Reiczigel J., Kövér P., Mées M. and Sümeghy L. (2006). Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calcing. Comp. Biochem. Physiol. B. 143, 391-396.
Glavinic U., Stankovic B., Draskovic V., Stevanovic J., Petrovic T., Lakic N. and Stanimirovic Z. (2017). Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PloS One. 12(11), e0187726.
Hendriksma H.P. and Shafir S. (2016). Honey bee foragers balance colony nutritional deficiencies. Behav. Ecol. Sociobiol. 70, 509-517.
Hendriksma H.P., Pachow C.D. and Nieh J.C. (2019). Effects of essential amino acid supplementation to promote honey bee gland and muscle development in cages and colonies. J. Insect Physiol. 117, 103906.
Herbert E.W.J., Shimanuki H. and Caron D. (1977). Optimum protein levels required by honey bees (Hymenoptera apidae) to initiate and maintain brood rearing. Apidologie. 8(2), 141-146.
Human H., Nicolson S.W., Strauss K., Pirk C.W. and Dietemann V. (2007). Influence of pollen quality on ovarian development in honeybee workers (Apis mellifera scutellata). J. Insect Physiol. 53(7), 649-655.
Koo H.N., Lee S.G., Yun S.H., Kim H.K., Choi Y.S. and Kim G.H. (2016). Comparative analyses of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) at the mRNA level between Apis mellifera and Apis cerana F. (Hymenoptera: Apidae) under stress conditions. J. Insect Sci. 16, 1-6.
Li J.L. (2003). Studies on the content of amino acids and proteins in tea pollen (Camellia sinensis). J. Tea Bus. 25(2), 61-71.
Li C., Xu B., Wang Y., Yang Z. and Yang W. (2014). Protein content in larval diet affects adult longevity and antioxidant gene expression in honey bee workers. Entomol. Exp. Appl. 151, 19-26.
Mattila H.R. and Otis G.W. (2006). Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. J. Econ. Entomol. 99, 604-613.
Mohebodini H., Tahmasbi G., Dastar B., Jafari Ahangari Y. and Zerehdaran S. (2013). Effect of dietary thiamine on growth of the iranian honey bee colonies (Apis mellifera meda) in different seasons. Agric. For. 59(3), 119-126.
Moon K., Lee S.H. and Kim Y.H. (2018). Validation of quantitative real-time PCR reference genes for the determination of seasonal and labor-specific gene expression profiles in the head of Western honey bee, Apis mellifera. PloS One. 13, e0200369.
Parkes T.L., Elia A.J., Dickinson D., Hilliker A.J., Phillips J.P. and Boulianne G.L. (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19, 171-174.
Phillips J.P., Campbell S.D., Michaud D., Charbonneau M. and Hilliker A.J. (1989). Null mutation of copper / zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl Acad. Sci. 86(8), 2761-2765.
Rueppell O., Kuster R, Miller K, Fouks B, Correa S.R., Collazo J., Phaincharoen M., Tingek S. and Koeniger N. (2016). A new metazoan recombination rate record and consistently high recombination rates in the honey bee genus Apis accompanied by frequent inversions but not translocations. Gen. Biol. Evol. 8(12), 3653-3660.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Schmidt J.O., Thoenes S.C. and Levin M.D. (1987). Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. America. 80(2), 176-183.
Seehuus S.C., Norberg K., Gimsa U., Krekling T. and Amdam G.V. (2006). Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl Acad. Sci. 103(4), 962-967.
Stanimirovic Z., Glavinic U., Stevanovic J., Radovic D., Ristanic M., Taric E. and Lakic N. (2017). Efficacy of plantderived formulation “Argus Ras” in Varroa destructor control. Acta Vet. Beograd. 67, 191-200.
Su S.K., Chen S.L., Lin X.Z., Hu F.L. and Shao M. (2000). The determination of ingredient of tea (Camellia sinensis) pollen. Apic. China. 51, 3-5.
Sun J. and Tower J. (1999). FLP recombinase-mediated induction of Cu/Zn superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19, 216-228.
Vaiserman A.M., Lushchak V. and Koliada A.K. (2018). Epigenetics of Longevity in Social insects. Epigenet. Aging Long. 3, 271-289.
Wang H., Zhang S.W., Zeng Z.J. and Yan W.Y. (2014). Nutrition affects longevity and gene expression in honey bee (Apis mellifera) workers. Apidologie. 45(5), 618-625.