Effect of Grape By-Products Inclusion on Ruminal Fermentation, Blood Metabolites, and Milk Fatty Acid Composition in Lactating Saanen Goats
Subject Areas : CamelM. Badiee Baghsiyah 1 , M. Bashtani 2 , S.H. Farhangfar 3 , H. Sarir 4
1 - Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
Keywords: blood metabolites, Ruminal fermentation, Saanen goat, grape by-products, milk fatty acid,
Abstract :
Grape by-product is one of the distillery industries which could be used in animal nutrition. In this 60-d trial, 16 lactating Saanen goats were assigned to four homogeneous groups and fed as follows: (1) control (CON) diet, (2) diet supplemented with 50 g/kg dry matter (DM) of grape by-product (GPB5), (3) diet supplemented with 100 g/kg DM of grape by-product (GPB10), and (4) diet supplemented with 150 g/kg DM of grape by-product (GPB15). The dry matter intake and apparent total-tract digestibility of DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were not affected (P>0.05) by grape by-products supplementation. Ruminal fermentation characteristics include pH and NH3-N were not affected by GBP treatments (P>0.05). Supplementing with GBP reduced propionate (P=0.06) without effect on other volatile fatty acids (VFAs). Increasing the percentage of grape residues to 10% of the total diet had no significant effect on goat milk production (P>0.05), but milk fat and protein percentage decreased in diets containing GBP (P<0.05). Plasma concentrations of glucose, cholesterol, and total protein were not affected by dietary treatments, but plasma concentration of triglyceride increased in GPB15. Inclusion of grape by-products in lactating Saanen goats diets had no significant effects (P>0.05) on the concentration of major classes of milk fatty acid (FA) according to the degree of saturation (i.e., saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids(PUFA)). These findings indicated that the inclusion of GBP to 15% in replacement of beet pulp in the diet of dairy Saanen goats have no adverse effects on ruminal fermentation, blood metabolites and milk fatty acid.
Abarghuei M.J., Rouzbehan Y. and Alipour D. (2010). The influence of the grape pomace on the ruminal parameters of sheep. Livest. Sci. 132(1), 73-79.
Abarghuei M.J., Rouzbehan Y., Salem A.Z.M. and Zamiri M.J. (2013). Nutrient digestion, ruminal fermentation and performance of dairy cows fed pomegranate peel extract. Livest. Sci. 157(2), 452-461.
Abarghuei M.J., Rouzbehan Y., Salem A.Z.M. and Zamiri M.J. (2014). Nitrogen balance, blood metabolites and milk fatty acid composition of dairy cows fed pomegranate-peel extract. Livest. Sci. 164(1), 72-80.
Abbeddou S., Rischkowsky B., Richter E.K., Hess H.D. and Kreuzer M. (2011). Modification of milk fatty acid composition by feeding forages and agro-industrial byproducts from dry areas to Awassi sheep. J. Dairy Sci. 94(9), 4657-4668.
Aguerre M.J., Capozzolo M.C., Lencioni P., Cabral C. and Wattiaux M.A. (2016). Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 99(6), 4476-4486.
Ahmed S.T., Lee J., Mun H. and Yang C. (2015). Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats. J. Anim. Physiol. Anim. Nutr. 99(6), 1127-1137.
Alipour D. and Rouzbehan Y. (2007). Effects of ensiling grape pomace and addition of polyethylene glycol on in vitro gas production and microbial biomass yield. Anim. Feed Sci. Technol. 137(1), 138-149.
Anantasook N., Wanapat M. and Cherdthong A. (2014). Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers. J. Anim. Physiol. Anim. Nutr. 98(1), 50-55.
AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Bahrami Y., Foroozandeh A.D., Zamani F., Modarresi M., Eghbal-Saeid S. and Chekani-Azar S. (2010). Effect of diet with varying levels of dried grape pomace on dry matter digestibility and growth performance of male lambs. J. Anim. Plant Sci. 6(1), 605-610.
Bauman D.E. and Griinari J.M. (2001). Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest. Prod. Sci. 70(1), 15-29.
Benchaar C. and Chouinard P.Y. (2009). Assessment of the potential of cinnamaldehyde, condensed tannins, and saponins to modify milk fatty acid composition of dairy cows. J. Dairy Sci. 92(7), 3392-3396.
Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O. and Kurihara M. (2009). Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92(11), 5512-5522.
Bohloli A., Naserian A., Valizadeh R. and Eftekhari F. (2009). The effect of pistachio by-product on nutrient apparent digestibility, rumination activity and performance of Holstein dairy cows in early lactation. J. Soil Water Sci. 13(47), 167-179.
Broderick G.A. and Kang J.H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1, 64-75.
Buccioni A., Minieri S., Rapaccini S., Antongiovanni M. and Mele M. (2011). Effect of chestnut and quebracho tannins on fatty acid profile in rumen liquid-and solid-associated bacteria: An in vitro study. Animal. 5(10), 1521-1530.
Buccioni A., Pauselli M., Viti C., Minieri S., Pallara G., Roscini V., Rapaccini S., Marinucci M. T., Lupi P., Conte G. and Mele M. (2015). Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci. 98(2), 1145-1156.
Buccioni A., Rapaccini S., Antongiovanni M., Minieri S., Conte G. and Mele M. (2010). Conjugated linoleic acid and C18:1 isomers content in milk fat of sheep and their transfer to Pecorino Toscano cheese. Int. Dairy J. 20(3), 190-194.
Cabiddu A., Molle G., Decandia M., Spada S., Fiori M., Piredda G. and Addis M. (2009). Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 2: Effects on milk fatty acid profile. Livest. Sci. 123(2), 230-240.
Cannas A., Tedeschi L., Atzori A. and Fox D. (2010). The Small Ruminant Nutrition System: Development and evaluation of a goat submodel. Italian J. Anim. Sci. 6, 609-611.
Carulla J.E., Kreuzer M., Machmüller A. and Hess H.D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian J. Agric. Res. 56(9), 961-970.
Chilliard Y. and Ferlay A. (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 44(5), 467-492.
Correddu F., Nudda A., Battacone G., Boe R., Francesconi A.H.D. and Pulina G. (2015). Effects of grape seed supplementation, alone or associated with linseed, on ruminal metabolism in Sarda dairy sheep. Anim. Feed Sci. Technol. 199, 61-72.
Daramola J.O., Adeloye A.A., Fatoba T.A. and Soladoye A.O. (2005). Haematological and biochemical parameters of West African Dwarf goats. Livest. Res. Rural Dev. 17(8), 95-105.
Dschaak C.M., Williams C.M., Holt M.S., Eun J.S., Young A.J. and Min B.R. (2011). Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci. 94(5), 2508-2519.
Dziuk H.E. (1984). Dukes Physiology of Domestic Animals. Cornel University Press, Ithaca USA.
FAO. (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Federation of Animal Science Societies (FASS). (2010). Guide for the Care and use of Agricultural Animals in Research and Teaching. Federation of Animal Science Societies, Champaign, Illinois.
Folch J., Lees M. and Stanley G.H.S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509.
Frutos P., Hervás G., Giráldez F.J. and Mantecón A.R. (2004). Tannins and ruminant nutrition, review. Spanish J. Agric. Res. 2(2), 191-202.
Ghaffari M.H., Tahmasbi A.M., Khorvash M., Naserian A.A. and Vakili A.R. (2014). Effects of pistachio by-products in replacement of alfalfa hay on ruminal fermentation, blood metabolites, and milk fatty acid composition in Saanen dairy goats fed a diet containing fish oil. J. Appl. Anim. Res. 42(2), 186-193.
Gholizadeh H., Naserian A.A., Valizadeh R. and Tahmasbi A.M. (2010). Effect of feeding pistachio byproduct on performance and blood metabolites in holstein dairy cows. Int. J. Agric. Biol. 12(6), 867-870.
Givens D.I., Owen E., Axford R.F.E. and Omed H.M. (2000). Forage Evaluation in Ruminant Nutrition. CABI Publishing, Wallingford, United Kingdom.
Grainger C., Clarke T., Auldist M.J., Beauchemin K.A., McGinn S.M., Waghorn G.C. and Eckard R.J. (2009). Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian J. Anim. Sci. 89(2), 241-251.
Hervás G., Frutos P., Giráldez F.J., Mantecón Á.R. and Del Pino M.C.Á. (2003). Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim. Feed Sci. Technol. 109(1), 65-78.
Jenkins T.C., Wallace R.J., Moate P.J. and Mosley E.E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem1. J. Anim. Sci. 86(2), 397-412.
Khiaosa-Ard R., Bryner S.F., Scheeder M.R.L., Wettstein H.R., Leiber F., Kreuzer M. and Soliva C.R. (2009). Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92(1), 177-188.
Liu H.W., Zhou D.W. and Li K. (2013). Effects of chestnut tannins on performance and antioxidative status of transition dairy cows. J. Dairy Sci. 96(9), 5901-5907.
Mahgoub O., Kadim I.T., Tageldin M.H., Al-Marzooqi W.S., Khalaf S.Q. and Ali A.A. (2008). Clinical profile of sheep fed non-conventional feeds containing phenols and condensed tannins. Small Rumin. Res. 78(1), 115-122.
Makkar H. (2000). Quantification of tannins in tree foliage: A laboratory manual for the FAO/IAEA co-ordinated research project on ’Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
Molan A.L., Attwood G.T., Min B.R. and McNabb W.C. (2001). The effect of condensed tannins from Lotus pedunculatus and Lotus corniculatus on the growth of proteolytic rumen bacteria in vitro and their possible mode of action. Canadian J. Microbiol. 47(7), 626-633.
Palmquist D.L., Beaulieu A.D. and Barbano D.M. (1993). Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76(6), 1753-1771.
Precht D., Molkentin J., Destaillats F. and Wolff R.L. (2001). Comparative studies on individual isomeric 18: 1 acids in cow, goat, and ewe milk fats by low-temperature high-resolution capillary gas-liquid chromatography. Lipids. 36(8), 827-832.
Rana M.S., Tyagi A., Hossain S.A. and Tyagi A.K. (2012). Effect of tanniniferous Terminalia chebula extract on rumen biohydrogenation,∆ 9-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids. Meat Sci. 90(3), 558-563.
Rezaeenia A., Naserian A.A., Valizadeh R. and Tahmasbi A. (2012). Effect of using different levels of pistachio by-products silage on composition and blood parameters of Holstein dairy cows. African J. Biotechnol. 11(22), 6192-6196.
Santos N.W., Santos G.T.D., Silva-Kazama D.C., Grande P.A., Pintro P.M., de Marchi F.E., Jobim C.C. and Petit H.V. (2014). Production, composition and antioxidants in milk of dairy cows fed diets containing soybean oil and grape residue silage. Livest. Sci. 159(1), 37-45.
SAS Institute. (2013). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Sedighi-Vesagh R., Naserian A.A., Ghaffari M.H. and Petit H.V. (2015). Effects of pistachio by-products on digestibility, milk production, milk fatty acid profile and blood metabolites in Saanen dairy goats. J. Anim. Physiol. Anim. Nutr. 99(4), 777-787.
Silanikove N., Gilboa N., Nir I., Perevolotsky A. and Nitsan Z. (1996). Effect of a daily supplementation of polyethylene glycol on intake and digestion of tannin-containing leaves (Quercus calliprinos, Pistacia lentiscus and Ceratonia siliqua) by goats. J. Agric. Food Chem. 44(1), 199-205.
Singleton V.L. and Rossi J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144-158.
Sirois M. (1995). Veterinary Clinical Laboratory Procedure. Mosby year book. Inc. St Louis, Missouri, USA.
Stewart C.S. and Duncan S.H. (1985). The effect of avoparcin on cellulolytic bacteria of the ovine rumen. Microbiology.. 131(3), 427-435.
Topps J.H. and Thompson J.K. (1984). Blood characteristics and the nutrition of ruminants. HMSO, London, United Kingdom.
Toral P.G., Hervás G., Belenguer A., Bichi E. and Frutos P. (2013). Effect of the inclusion of quebracho tannins in a diet rich in linoleic acid on milk fatty acid composition in dairy ewes. J. Dairy Sci. 96(1), 431-439.
Toral P.G., Hervás G., Bichi E., Belenguer Á. and Frutos P. (2011). Tannins as feed additives to modulate ruminal biohydrogenation: Effects on animal performance, milk fatty acid composition and ruminal fermentation in dairy ewes fed a diet containing sunflower oil. Anim. Feed Sci. Technol. 164(3), 199-206.
Van Soest P.J., Robertson J.B. and Lewis B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583-3597.
Van Wijngaarden D. (1967). Modified rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 39(7), 848-849.
Vasta V., Priolo A., Scerra M., Hallett K.G., Wood J.D. and Doran O. (2009). Δ9 desaturase protein expression and fatty acid composition of longissimus dorsi muscle in lambs fed green herbage or concentrate with or without added tannins. Meat Sci. 82(3), 357-364.
Vasta V., Yáñez-Ruiz D.R., Mele M., Serra A., Luciano G., Lanza M., Biondi L. and Priolo A. (2010). Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl. Environ. Microbiol. 76(8), 2549-2555.
Walker G.P., Dunshea F.R. and Doyle P.T. (2004). Effects of nutrition and management on the production and composition of milk fat and protein: A review. Australian J. Agric. Res. 55(10), 1009-1028.
Yildiz S., Kaya I., Unal Y., Elmali D.A., Kaya S., Cenesiz M., Kaya M. and Oncuer A. (2005). Digestion and body weight change in Tuj lambs receiving oak (Quercus hartwissiana) leaves with and without PEG. Anim. Feed Sci. Technol. 122(1), 159-172.
Žubčić D. (2001). Some biochemical parameters in the blood of grazing German improved fawn goats from Istria, Croatia. Vet. Arhiv. 71(5), 237-244.