Effect of Amylolytic and Cellulolytic Enzymes on Whole Plant Corn Silage: Characteristics of Silage and Animal Digestion
Subject Areas : CamelJ.R. Gandra 1 * , A.T. Nunes 2 , E.R. Oliveira 3 , M.S.J. Silva 4 , C.A. Pedrini 5 , F.S. Machado 6 , E.R.S. Gandra 7 , P.V.C. Mendes 8 , A.G.S. Pause 9
1 - Instituto de Estudos em Desenvolvimento Agrário e Regional, Faculdade de Agronomia de Marabá, Universidade Federal do Sul e Sudeste do Pará, Marabá, Pará, Brazil
2 - Department of Animal Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil
3 - Faculdade de Ciências Agrarias, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
4 - Faculdade de Ciências Agrarias, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
5 - Faculdade de Ciências Agrarias, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
6 - Faculdade de Ciências Agrarias, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
7 - Instituto de Estudos no Trópico Umido, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal do Sul e Sudeste do Pará, Xinguara, Pará, Brazil
8 - Instituto de Estudos no Trópico Umido, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal do Sul e Sudeste do Pará, Xinguara, Pará, Brazil
9 - Instituto de Estudos em Desenvolvimento Agrário e Regional, Faculdade de Agronomia de Marabá, Universidade Federal do Sul e Sudeste do Pará, Marabá, Pará, Brazil
Keywords: nutrient digestibility, aerobic stability, Microbial quality, fermentative losses,
Abstract :
The aim of this study was to evaluate effects of adding exogenous enzymes to silage on fermentative losses and profile, aerobic stability, chemical composition, in vitro degradation, microbial quality, and nutrients intake and digestibility. Treatments were control (CON); addition of exo-1,4-α-glycosidase glucoamylase (GLU); addition of β-glucan 4-glucanhydrolase (CEL); and GLU + CEL. CEL increased (P≤0.038) gas losses and effluents production, CEL and GLU decreased (P=0.039) DM recovery compared to control but not differ from GLU + CEL. CEL silage had higher (P≤0.021) starch and crude protein and in vitro digestibility of dry matter (DM) and neutral detergent fiber (NDF) (P≤0.032), while GLU had higher (P=0.001) acid detergent fiber (ADF). CEL showed lower (P=0.012) ethanol content and higher (P=0.02) anaerobic bacteria counts, while GLU showed higher (P=0.012) lactate concentration and lower (P≤0.002) counts of bacteria and fungi. Lambs fed with CEL presented higher (P≤0.012) digestibility coefficients for DM, organic matter (OM), crude protein (CP) and NDF. Decrease on DM recovery indicates no improvements on the nutritive value of silage. On the other hand, cellulolytic enzyme positively affected animal digestion.
AOAC. (2000). Official Methods of Analysis. 17th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Beauchemin K.A., Colombatto D., Morgavi D.P. and Yang W.Z. (2003). Use of exogenous fibrolytic enzymes to improve animal feed utilization by ruminants. J. Anim. Sci. 81(2), 37-47.
Briceño A.G. and Martínez R. (1995). Comparison of methods for the detection and enumeration of lactic acid bacteria. Arch. Latinoam. Nutr. 45, 207-212.
Dado R.G. and Allen M.S. (1995). Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary fiber or inert bulk. J. Dairy Sci. 78, 118-133.
Dehghani M.R., Weisbjerga M.R., Hvelplunda T. and Kristensen N.B. (2012). Effect of enzyme addition to forage at ensiling onsilage chemical composition and NDF degradation characteristics. Livest. Sci. 150, 51-58.
Ding M.Y., Koizumi H. and Suzuki Y. (1995). Comparison of three chromatographic systems for determination of organic acids in wine. Anal. Sci. 2, 239-243.
Driehuis F., Oude Elferink W.H. and Van Wikselaar P.G. (2001). Fermentation characteristics and aerobic stability of grass silage inoculant with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 56(4), 330-343.
EMBRAPA. (1997). Manual de Métodos de Análise de Solo. EMBRAPA-CNPS, Rio de Janeiro, Brazil.
Eun J.S., Beauchemin K.A. and Schulzet H. (2007). Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfafa hay and corn silage. J. Dairy Sci. 90, 1440-1451.
Foldager J. (1977). Protein requirement and non-protein nitrogen for high producing cow in early lactation. Ph D. Thesis. East Lasing-Michigan State Univ., USA.
Gandra J.R., Miranda J.A., Goes R.H.T.B., Takiya C.S., Del Valle T.A., Oliveira E.R., Freitas-Junior J.E., Gandra E.R.S., Araki H.M.C. and Santos A.L.A.V. (2018). Fibrolytic enzyme supplementation through ruminal bolus on eating behavior, nutrient digestibility and ruminal fermentation in Jersey heifers fed either corn silage- or sugarcane silage-based diets. Anim. Feed Sci. Technol. 231, 29-37.
Gandra J.R., Takiya C.S., Del Valle T.A., Orbach N.D., Ferraz I.R., Oliveira E.R., Goes R.H.T.B., Gandra E.R.S., Pereira T.L., Batista J.D.O., Araki H.M.C., Damiani J. and Escobar A. Z. (2019). Influence of a feed additive containing vitamin B12 and yeast extract on milk production and body temperature of grazing dairy cows under high temperature-humidity indexenvironment. Livest. Sci. 221, 28-32.
Giuberti G., Gallo A., Masoero F., Ferraretto L.F., Hoffman P.C., and Shaver R.D. (2014). Factors affecting starch utilization in large animal food production system: A review. Starch. 66, 72-90.
Higginbotham G.E., Mueller S.C., Bolsen K.K. and Peters E.J. (1998). Effects of inoculants containing propionic acid bacteria on fermentation and aerobic stability of corn silage. J. Dairy Sci. 81, 2185-2192.
Holden L.A. (1999). Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci. 82, 1791-1794.
Jin L., Duniere L., Lynch J.P., McAllister T.A., Baah J. and Wang Y. (2015). Impact of ferulic acid esterase producing lactobacilliand fibrolytic enzymes on conservation characteristics, aerobicstability and fiber digestibility of barley silage. Anim. Feed Sci. Technol. 207, 62-74.
Jobim C.C., Nussio L.G. and Reis R.A. (2007). Avanços metodológicos na avaliação da qualidade da forragem conservada. Rev. Bras. Zootec. 36, 101-120.
Kung Jr L., Grieve D.B. and Thomas J.W. (1984). Added ammonia or microbial inocula for fermentation and nitrogenouscompounds of alfalfa ensiled at various percents of dry matter. J. Dairy Sci. 67, 299-306.
Kung L. and Muck R.E. (2015). Silage additives: Where are wegoing? Pp. 72-81 in Proc. 17th Int. Silage Conf., Piracicaba, Sao Paulo, Brazil.
Lara E.C., Bragiato U.C., Rabelo C.H.S., Messana J.D., Sobrinho A.G.S. and Reis R.A. (2018). Inoculation of corn silage with Lactobacillus plantarum and Bacillus subtilis associated with amylolytic enzyme supply at feeding. 2. Growth performance and carcass and meat traits of lambs. Anim. Feed Sci. Technol. 243, 112-114.
Lynch J.P., Baah J. and Beauchemin K.A. (2015). Conservation,fiber digestibility, and nutritive value of corn harvested at 2 cuttingheights and ensiled with fibrolytic enzymes, either alone orwith a ferulic acid esterase-producing inoculant. J. Dairy Sci. 98, 1214-1224.
Muck R.E. and Kung Jr L. (1997). Effects of silage additives ensiling. Pp. 187-199 in Proc. Silage: Field to Feedbunk, Ithaca, New York.
Muck R.E., Nadeau E.M.G., Mcallister T.A., Contreras-Govea F.E., Santos M.C. and Kung Jr L. (2018). Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101(5), 3980-4000.
Nadeau E.M.G., Russell J.R. and Buxton D.R. (2000). Intake, digestibility, and composition of orchardgrass and alfalfa silagestreated with cellulase, inoculant and formic acid for lambs. J. Anim. Sci. 78, 2980-2989.
Nidetsky B. and Claeyssens M. (1994). Specific quantitation of trichodrema reesel celulases in reconstituted mixtures and its application to cellulase-cellulose binding studies. Biotechnol. Bioeng. 44, 961-966.
Ning T., Wang H., Zheng M., Niu D., Zuo S. and Xu C. (2017). Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages. Asian-Australasian J. Anim. Sci. 30, 171-180.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC., USA.
Oba M. and Allen M.S. (2000). Effect of brown mibrid 3 mutation in corn silage on productivity of dairy cows fed two levels of dietary NDF: 1. Feeding behavior and nutrient utilization. J. Dairy Sci. 83, 1333-1341.
Oliveira E.R. de Takiya C.S., Del Valle T.A., Rennó F.P., Goes R.H.T.B., Leite R.S.R., Oliveira K., Batista J.D., Araki H., Damiani J., Da Silva J.M.S., Gandra E., Pereira T.L. and Gandra J. (2019). Effects of exogenous amylolytic enzymes on fermentation, nutritive value, and in vivo digestibility of rehydrated corn silage. Anim. Feed Sci. Technol. 251, 86-95.
Rabie C.J., Lubben A., Marais G.J. and Van Vuuren H.J. (1997). Enumeration of fungi in barley. Int. J. Food Microbiol. 35, 117-127.
Rodrigues P.H.M., Gomes R.C.G., Meyer P.M., Borgatti L.M.O., Franco F.M.J. and Godoy G.L.A. (2012). Effects of microbial inoculants and amino acid production by-product on fermentation and chemical composition of sugarcane silage. Rev. Bras. Zootec. 41, 1394-1400.
SAS Institute. (2001). SAS®/STAT Software, Release 8.2. SAS Institute, Inc., Cary, NC. USA.
Tilley J.M.A. and Terry R.A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104-111.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583-3597.
Zilio E.M.C., Del Valle T.A., Ghizzi L.G., Takiya C.S., Dias M.S.S., Nunes A.T., Silva G.G. and Rennó F.P. (2019). Effects of exogenous fibrolytic and amylolytic enzymes on ruminal fermentation and performance of mid-lactation dairy cows. J. Dairy Sci. 102, 4179-4189.