The Effect of Uncoupling Protein Polymorphisms on Growth, Breeding Value of Growth and Reproductive Traits in the Fars Indigenous Chicken
Subject Areas : Camelآ. محمدیفر 1 , م.ر. محمدآبادی 2 *
1 - Department of Animal Science, Faculty of Agriculture, Payame Noor University, Kerman, Iran
2 - Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
Keywords: PCR-RFLP, polymorphism, Fars indigenous chicke, reproductive trait, uncoupling pro-tein,
Abstract :
The avianuncoupling protein (avUCP) is a member of the mitochondrial transporter superfamily that uncouples proton entry in the mitochondrial matrix from ATP synthesis. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to estimate the allele and genotype frequencies of the UCP/HhaI polymorphisms and to determine associations between these polymorphisms and the growth traits, breeding value of growth and reproductive traits in the Fars indigenous chicken. For this purpose phenotype information of 18 successive generations from 200 birds were analyzed using a univariate animal model in ASREML procedure. The evaluation of the association between this single nucleotide polymorphisms (SNP) with reproductive traits suggests a positive effect of TC genotype with age at first egg (ASM) compared with CC genotype. In addition, TC genotype was significantly associated with the breeding value of age at first egg compared with the CC genotype (P<0.05). In conclusion, our results suggest that the TC genotype of the UCP gene is associated with age at sexual maturity (ASM) and breeding value of age at sexual maturity and UCP polymorphisms may be used as DNA markers for selection in the breeding process of the Fars indigenous chicken.
Abadi M.M., Askari N., Baghizadeh A. and Esmailizadeh A. (2009). A directed search around caprine candidate loci provided evidence for microsatellites linkage to growth and cashmere yield in Rayini goats. Small Rumin. Res. 81, 146-151.
Adams S. (2002). Uncoupling protein homologs: emerging views of physiological function. Nutrition. 130, 711-714.
Argyropoulos G. and Harper M.E. (2002). Uncoupling proteins and thermoregulation. J. Appl. Physiol. 92, 2187-2198.
Askari N., Mohammadabadi M.R. and Baghizadeh A. (2011). ISSR markers for assessing DNA polymorphism and genetic characterization of cattle, goat and sheep populations. Iranian J. Biotechnol. 9, 222-229.
Boss O., Hagen T. and Lowell B.B. (2000). Uncoupling proteins 2 and 3, potential regulators of mitochondrial energy metabolism. Diabetes. 49, 143-156.
Chaudhuri L., Srivastava R.K., Kos F. and Shrikant P.A. (2016). Uncoupling protein 2 regulates metabolic reprogramming and fate of antigen‑stimulated CD8+ T cells. Cancer Immunol. Immunother. 65, 869-874.
Contreras L., Rial E., Cerdan S. and Satrustegui J. (2016). Uncoupling protein 2 (UCP2) function in the brain as revealed by the cerebral metabolism of (1–13C)-glucose. Neurochem. Res. 1, 1-7.
Dulloo A.G. and Samec S. (2001). Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered. British J. Nutr. 86, 123-139.
Evock-Clover C.M., Poch S.M., Richards M.P., Ashwell C.M. and McMurtry J.P. (2002). Expression of an uncoupling protein gene homolog in chickens. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 133, 345-358.
Fleury C., Neverova M. and Collins S. (1997). Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269-272.
Gilmour A.R., Gogel B.J., Cullis B.R. and Thompson R. (2006). ASReml User Guide. Release 2.0 VSN International Ltd., Hemel Hempstead, HP1 1ES, United Kingdom.
Gimeno R.E., Dembski M. and Gimeno C.J. (1997). Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes. 46, 900-906.
Guo J.J., Liu Y.J., Li M.X., Yang Y.J., Recker R.R. and Deng H.W. (2005). Linkage exclusion analysis of two candidate regions on chromosomes 7 and 11: leptin and UCP2/UCP3 are not QTLs for obesity in US Caucasians. Biochem. Biophys. Res. Commun. 332, 602-608.
Han R.H. (2008). Study on the polymorphisms in UCP3, IGF2, CAPN1 gene and its relationship with carcass and meat quality traits in Qinchuan cattle and its hybrid cattle. Ph D. Thesis. Northwest A and F Univ., Xianyang, China.
Himms-Hagen J. (1990). Brown adipose tissue thermogenesis: interdisciplinary studies. Fatig. Fract. Eng. Mater. Struct. 4, 2890-2898.
Himms-Hagen J. and Harper M.E. (2001). Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: a hypothesis. Proc. Soc. Exp. Biol. Med. 226, 78-84.
Hirasaka K., Mills E.M., Haruna M., Bando A., Ikeda Ch., Abe T., Kohno Sh., Nowinski S.M., Lago C.U., Akagi K., Tochio H., Ohno A., Teshima-Kondo S., Okumura Y. and Nikawa T. (2016). UCP3 is associated with Hax-1 in mitochondria in the presence of calcium ion. Biochem. Biophys. Res. Commun. 472, 108-113.
Krauss S., Zhang C.Y. and Lowell B.B. (2002). A significant portion of mitochondrial proton leak in intact thymocytes depends on expression of UCP2. Proc. Natl Acad. Sci. America. 99, 118-122.
Li Q.L. (2006). Study on the relationship between polymorphism of UCP3 gene and biochemical index in serum of bovine. Ph D. Thesis. Northwest A and F Univ., Xianyang, China.
Liu Y.J., Liu P.Y., Long J., Lu Y., Elze L., Recker R.R. and Deng H.W. (2005). Linkage and association analyses of the UCP 3 gene with obesity phenotypes in Caucasian families. Physiol. Genom. 22, 197-203.
Moazeni S.M., Mohammadabadi M.R., Sadeghi M., Moradi Shahrbabak H., Esmailizadeh A.K. and Bordbar F. (2016). Association between UCP gene polymorphisms and growth, breeding value of growth and reproductive traits in Mazandaran indigenous chicken. Open J. Anim. Sci. 6, 1-8.
Mohammadabadi M.R., Nikbakhti M., Mirzaee H.R., Shandi M.A., Saghi D.A., Romanov M.N. and Moiseyeva I.G. (2010). Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian J. Genet. 46, 572-576.
Mohammadifar A., Faghih Imani S.A., Mohammadabadi M.R. and Soflaei M. (2013). The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. J. Agric. Biotechnol. 5, 125-136.
Motloch L.J., Gebing T., Reda S., Schwaiger A., Wolny M. and Hoppe U.C. (2016). UCP3 Regulates single-channel activity of the cardiac mCa1. J. Membr. Biol. 249, 577-584.
Raimbault S., Dridi S., Denjean F., Lachuer J., Couplan E., Bouillaud F., Bordas A., Duchamp C., Taouis M. and Ricquier D. (2001). An uncoulping protein homologue putatively involved in facultative muscle thermogenesis in birds. Biochem. J. 353, 441-444.
Ricquier D. and Bouillaud F. (1997). The mitochondrial uncoupling protein: structural and genetic studies. Proc. Natl Acad. Sci. America. 56, 83-108.
Rudofsky G.J., Schroedter A., Schlotterer A., Voron’ko O.E., Schlimme M., Tafel J., Isermann B.H., Humpert P.M., Morcos M., Bierhaus A., Nawroth P.P. and Hamann A. (2006). Functional polymorphisms of UCP2 and UCP3 are associated with a reduced prevalence of diabetic neuropathy in patients with type 1 diabetes. Diabetes Care. 29, 89-94.
Saltzman E. and Roberts S.B. (1995). The role of energy expenditure in energy regulation: findings from a decade of research. Nutr. Rev. 53, 209-220.
SAS Institute. (2002). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Sherman E.L., Nkrumah J.D., Murdoch B.M., Li C., Wang Z., Fu A. and Moore S.S. (2008). Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle. J. Anim. Sci. 86, 1-16.
Shojaei M., Mohammad Abadi M.R., Asadi Fozi M., Dayani O., Khezri A. and Akhondi M. (2011). Association of growth trait and Leptin gene polymorphism in Kermani sheep. J. Cell. Mol. Res. 2, 67-73.
Taylor B.A. and Phillips S.J. (1996). Detection of obesity QTLs on mouse chromosome-1 and chromosome-7 by selective DNA pooling. Genomics. 34, 389-398.
Toubro S., Sorensen T.I.A., Ronn B. and Astrup A. (1996). Twenty four-hour energy expenditure: the role of body composition, thyroid status, sympathetic activity, and family membership. J. Clin. Endocrinol. Metabol. 81, 2670-2674.
Vignal A., Milan D., San Cristobal M. and Eggen A. (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34, 275-305.
Wang Q., Wang J., Hu M., Yang Y., Guo L., Xu J., Lei C., Jiao Y. and Xu J.C. (2016). Uncoupling protein 2 increases susceptibility to lipopolysaccharide-induced acute lung injury in mice. Mediat. Inflamm. 2016, 9154230.
York B., Truett A.A. and Monteiro M.P. (1999). Gene-environment interaction: a significant diet-dependent obesity locus demonstrated in a congenic segment on mouse chromosome 7. Mamm. Genom. 10, 457-462.
Yu G., Wang J., Xu K. and Dong J. (2016). Dynamic regulation of uncoupling protein 2 expression by micro RNA-214 in hepatocellular carcinoma. Biosci. Rep. 36, 1-6.
Zamani P., Akhondi M. and Mohammadabadi M.R. (2015). Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in Sheep. Small Rumin. Res. 132, 123-127.
Zamani P., Akhondi M., Mohammadabadi M.R., Saki A.S., Ershadi A., Banabazi M.H. and Abdolmohammadi A.R. (2013). Genetic variation of Mehraban sheep using two intersimple sequence repeat (ISSR) markers. African J. Biotechnol. 10, 1812-1817.