Effect of Tannins and Monensin on Rumen Fermentation and Feed Energy Partitioning of Nellore Cows
Subject Areas : CamelR.J. Tseu 1 , F. Perna Junior 2 , R.F. Carvalho 3 , G.A. Sene 4 , C.B. Tropaldi 5 , A.H. Peres 6 , F. Dos Anjos 7 , P.H.M. Rodrigues 8
1 - Department of Animal Production, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
2 - Department of Animal Nutrition and Production, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, São Paulo, Brazil
3 - Department of Animal Nutrition and Production, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, São Paulo, Brazil
4 - Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, São Paulo, Brazil
5 - Department of Animal Nutrition and Production, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, São Paulo, Brazil
6 - Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, São Paulo, Brazil
7 - Department of Animal Production, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
8 - Department of Animal Nutrition and Production, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, São Paulo, Brazil
Keywords: methane, protozoa, Short chain fatty acids, energy partitioning, feed additives, feed energy,
Abstract :
This study aimed to evaluate the effect of Acacia mearnsii tannins and monensin combination on rumen fermentation parameters and feed energy partitioning of Nellore cows. In a 2 × 4 factorial arrangement, 8 cannulated Nellore cows were distributed in 2 contemporary 4 × 4 latin square design and received 8 diets that differed in the level of tannin inclusion (0.00, 0.75, 1.50 and 2.25% of feed dry matter (DM)) and presence of monensin. Monensin was daily administered to each cow in one square (about 32 mg/kg DM). Accordingly, the experiment was conducted in 4 periods of 28 days each. Therefore, daily dry matter intake (DMI), gross energy intake (GEI), rumen solid mass, neutral detergent fibre (NDF) degradability, rumen pH, rumen fermentation products and rumen protozoa were measured and the feed energy partitioning was evaluated. The only interaction (antagonistic) observed between monensin and tannins was on the minimum rumen pH (P=0.0173). Monensin reduced acetate:propionate production ratio in 28.80% (P=0.0007). Tannins linearly reduced DMI, GEI and NDF degradability, but linearly increased rumen solid mass (P<0.05). Tannins had a quadratic effect on the time (min/day) the rumen pH was below 5.8 and 6.0, as well as the pH area (h.pH/day) below 5.8, 6.0 and 6.2. Tannins had neither effect on rumen ammonia nor on protozoa count (P>0.05). Tannins linearly reduced CH4, acetate, butyrate and total short chain fatty acids (SCFA) production as well as the gross energy release in form of CH4, but linearly reduced the energy release in intestine and linearly increased feed energy loss in faeces. Monensin and tannins had independent effects on rumen fermentation parameters, as well as on feed energy partitioning, therefore, no synergy was observed. The use of A. mearnsii tannins up to 2.25% of feed DM reduced CH4 production (up to 34.7%), but did not improve feed energy efficiency.
Aboagye I.A. and Beauchemin K.A. (2019). Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animal. 9, 1-18.
Aboagye I.A., Oba M., Koenig K.M., Zhao G.Y. and Beauchemin K.A. (2019). Use of gallic acid and hydrolyzable tannins to reduce methane emission and nitrogen excretion in beef cattle fed a diet containing alfalfa silage. J. Anim. Sci. 97, 2230-2244.
Addisu S. (2016). Effect of dietary tannin source feeds on ruminal fermentation and production of cattle. J. Anim. Feed Res. 6, 45-55.
Aguerre M.J., Capozzolo M.C., Lencioni P., Cabral C. and Wattiaux M.A. (2016). Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 99, 4476-4486.
Allen M.S. and Linton J. (2007). In vivo methods to measure digestibility and digestion kinetics of feed fractions in the rumen. Pp. 72-89 in Proc. 1st Simp. Int. Avan. Res. Techniq. Nutr. Ruminantes. Universidade de São Paulo, Pirassununga, Brazil.
Animut G., Puchala R., Goetsch A.L., Patra A.K., Sahlu T., Varel V.H. and Wells J. (2008). Methane emission by goats consuming diets with different levels of condensed tannins from Lespedeza. Anim. Feed Sci. Technnol. 144, 212-227.
AOAC. (1995). Official Methods of Analysis. Vol. I. 16th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Appuhamy J.A.D.R.N., Strathe A.B., Jayasundara S., Wagner-Riddle C., Dijkstra J., France J. and Kebreab E. (2013). Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 96, 5161-5173.
Azzaz H.H., Mural H.A. and Morsy T.A. (2015). Utility of ionophores for ruminant animals: A review. Asian J. Anim. Sci. 9, 254-265.
Benchaar C., McAllister T.A. and Chouinard P.Y. (2008). Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 91, 4765-4777.
Capelari M., Johnson K.A., Latack B., Roth J. and Powers W. (2018). The effect of encapsulated nitrate and monensin on ruminal fermentation using a semi-continuous culture system. J. Anim. Sci. 96, 3446-3459.
Carega M.F.C.S. and Dantas A. (2017). Metano ruminal e o uso de taninos condensados como estratégia de mitigação. Nucl. Anim. 9, 51-64.
Carrasco J.M.D., Cabral C., Redondo L.M., Viso N.D.P., Colombatto D., Farber M.D. and Miyakawa M.E.F. (2017). Impact of chestnut and quebracho tannins on rumen microbiota of bovines. BioMed. Res. Int. 2017, 1-11.
Carulla J.E., Kreuzer M., Machmuller A. and Hess H.D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian J. Agric. Res. 56, 961-970.
Costa F.A.A., Fernandes L.B., Garcia V.P., Soares W.V. and Franzolin R. (2017). Degradabilidade de gramíneas, fermentação e protozoários no rúmen de bovinos em dietas com diferentes aditivos. Rev. Brasil. Saúd. Prod. Anim. 18, 269-281.
Crossland W.L., Tedeschi L.O., Callaway T.R., Miller M.D., Smith W.B. and Cravey M. (2017). Effects of rotating antibiotic and ionophore feed additives on volatile fatty acid production, potential for methane production, and microbial populations of steers consuming a moderate-forage diet. J. Anim. Sci. 95, 4554-4565.
Czerkawski J.W. (1986). An introduction to rumen studies. Pp. 236 in Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press, Oxford, United Kingdom.
Dehority B.A. (1993). Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. CRC Press, Inc., Boca Raton, Florida.
Dentinho M.T.P. and Bessa R.J.B. (2016). Effect of tannin source and pH on stability of tannin-protein and fibre complexes. Rev. Ciên. Agric. 39, 114-121.
Dickhoefer U., Ahnert S. and Susenbeth A. (2016). Effects of quebracho tannin extract on rumen fermentation and yield and composition of microbial mass in heifers. J. Anim. Sci. 94, 1561-1575.
Dschaak C.M., Williams C.M., Holt M.S., Eun J.S., Young A.J. and Min B.R. (2011). Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci. 94, 2508-2519.
Duffield T.F., Merrill J.K. and Bagg R.N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 90, 4583-4592.
Duffield T.F., Rabies A.R. and Learn I.J. (2008). A meta-analysis of the impact of monensin in lactating dairy cattle. Part 2. Production effects. J. Dairy Sci. 91, 1347-1360.
Ellis J.L., Dijkstra J., Bannink A., Kebreab E., Hook S.E., Archibeque S. and France J. (2015). Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. J. Anim. Sci. 90, 2717-2726.
Environmental Protection Agency (EPA) (2018). Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2016. Available at: https://www.epa.gov/sites/production/files.
Erwin E.S., Marco G.J. and Emery E.M. (1961). Volatile fatty acids analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44, 1768-1771.
Foldager J. (1977). Protein requirement and non protein nitrogen for high producing cow in early lactation. Ph D. Thesis. Michigan State Univ., East Lasing, Michigan.
Goel G. and Makkar H.P.S. (2012). Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 44, 729-739.
Grainger C., Williams R., Eckard R.J. and Hannah M.C. (2010). A high dose of monensin does not reduce methane emissions of dairy cows offered pasture supplemented with grain. J. Dairy Sci. 93, 5300-5308.
Guan H., Wittenberg K.M., Ominski K.H. and Krause D.O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84, 1896-1906.
Hamilton S.W., Depeters E.J., Mcgarvey J.A., Lathrop J. and Mitloehner F.M. (2010). Greenhouse gas, animal performance, and bacterial population structure responses to dietary monensin fed to dairy cows. Atmospheric pollutants and trace gases. J. Environ. Qual. 39, 106-114.
IPCC (Inter Governmental Panel on Climate Change). (2007). Climate Change 2007: The Physical Science Basis. Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
IPCC (Inter Governmental Panel on Climate Change). (2014). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
Jayanegara A. and Palupi E. (2010). Condensed tannin effects on nitrogen digestion in ruminants: A meta-analysis from in vitro and in vivo studies. Media Petern. 33, 176-181.
Jayanegara A., Goel G., Makkar H.P.S. and Becker K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technnol. 209, 60-68.
Jayanegara A., Leiber F. and Kreuzer M. (2012). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 96, 365-375.
Kaminski M., Kartanowics R., Jastrzebski D. and Kaminski M.M. (2003). Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography. J. Chromatogr. 989, 277-283.
Kulasek G.A. (1972). A micromethod for determination of urea in plasma, whole blood and blood cells using urease and phenol reagent. Polish Arch. Weter. 15, 801-810.
Lynch J. (2019). Availability of disaggregated greenhouse gas emissions from beef cattle production: A systematic review. Environ. Impact Assess. Rev. 76, 69-78.
Makkar H.P.S. (2003). Quantification of Tannins in Tree and Shrub Foliage: A laboratory Manual. Springer, The Netherlands.
Makkar H.P.S., Blümmel M., Borowy N.K. and Becker K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Food Sci. Technnol. 61, 161-165.
Mertens D.R. (1993). Quantitative Aspects of Ruminant Digestion and Metabolism. CAB Internatinal, University Press, Cambridge, United Kingdom.
Montano M.F., Manriquez O.M., Salinas-Chavira J., Torrentera N. and Zinn R.A. (2015). Effects of monensin and virginiamycin supplementation in finishing diets with distiller dried grains plus solubles on growth performance and digestive function of steers. J. Appl. Anim. Res. 43, 217-225.
Moya D., Mazzenga A., Holtshausen L., Cozzi G., González L.A., Calsamiglia S., Gibb D.G., Mcallister T.A., Beauchemin K.A. and Schwartzkopf-Genswein K. (2011). Feeding behavior and ruminal acidosis in beef cattle offered a total mixed ration or dietary components separately. J. Anim. Sci. 89, 520-530.
Naumann H.D., Tedeschi L.O., Zeller W.E. and Huntley N.F. (2017). The role of condensed tannins in ruminant animal production: Advances, limitations and future directions-a review. Brazilian J. Anim. Sci. 46, 929-949.
Nawab A., Tang S., Gao W., Li G., Xiao M., An L., Wu J. and Liu W. (2020a). Tannin supplementation in animal feeding; mitigation strategies to overcome the toxic effects of tannins on animal health: A review. J. Agric. Sci. 12, 217-230.
Nawab A., Li G., An L., Nawab Y., Zhao Y., Xiao M., Tang S. and Sun C. (2020b). The potential effect of dietary tannins on enteric methane emission and ruminant production, as an alternative to antibiotic feed additives-a review. Ann. Anim. Sci. 20, 355-388.
Nigrant R.W.S., Zain M., Epormen E. and Suryani H. (2017). Effects of doses and different sources of tanninis on in vitro ruminal methane, volatile fat acids production and on bacterial and protozoa populations. Asian J. Anim. Sci. 11, 47-53.
Odongo N.E., Bagg R., Vassie G., Dick P., Or-Rashid M.M., Hook S.E., Gray J.T., Kebreab E., France J. and McBride B.W. (2007). Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 90, 1781-1788.
Ogunade I., Schweickart H., Andries K., Lay J. and Adeyemi J. (2018). Monensin alters the functional and metabolomic profile of rumen microbiota in beef cattle. Animal. 8, 1-16.
Oliveira M.V.M., Lana R.P., Eifert E.C., Luz D.F., Pereira J.C., Pérez J.R.O. and Vargas Júnior F.M. (2007). Influência da monensina sódica no consumo e na digestibilidade de dietas com diferentes teores de proteína para ovinos. Rev. Bras. Zootec. 36, 643-651.
Ørskov E.R. and McDonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499-503.
Ørskov E.R., Deb Hovell F.D. and Mould F. (1980). The use of the nylon bag technique for evaluation of feedstuffs. Trop. Health Anim. Prod. 5, 195-213.
Osorio-Teran A.I., Mendoza-Martínez G.D., Miranda-Romero L.A., Martínez-Gomez D., Hernández-García P.A. and Martínez-García J.A. (2017). Effect of calcium propionate and monensin on in vitro digestibility and gas production. Rev. Bras. Zootec. 46, 348-353.
Owens F.N. and Basalan M. (2016). Ruminal fermentation. Pp. 63-102 in Ruminology. D.D. Millen, M.D.B. Arrigoni and R.D.L. Pacheco, Eds. Springer, Switzerland.
Patra A.K. and Saxena J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Food Sci. Agric. 91, 24-37.
Penner G.B. and Beauchemin K.A. (2010). Variation among cows in their susceptibility to acidosis: challenge or opportunity. Adv. Dairy Sci. Technol. 22, 173-187.
Penner G.B., Beauchemin K.A. and Mutsvangwa T. (2007). Severity of ruminal acidosis in primiparous Holstein cows during the periparturient period. J. Dairy Sci. 90, 365-375.
Perna Junior F. (2018). Taninos como aditivo alimentar para mitigação das emissões de metano em ruminantes. Ph D. Thesis. University of Sao Paulo, Pirassununga, Brazil.
Perna Junior F., Cassiano E.C.O., Martins M.F., Romero L.A., Zapata D.C.V., Pinedo L.A., Marino C.T. and Rodrigues P.H.M. (2017). Effect of tannins-rich extract from Acacia mearnsii or monensin as feed additives on ruminal fermentation efficiency in cattle. Livest. Sci. 203, 21-29.
Piñeiro-Vázquez A.T., Canul-Solis J.R., Alayayón-Gamboa J.A., Chay-Canul A.J., Ayala-Burgos A.J., Aguilar-Pérez C.F., Solorio-Sánchez F.J. and Ku-Vera J.C. (2015). Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity. Arch. Med. Vet. 47, 263-272.
Polizel D.M., Martins A.S., Miszura A.A., Ferraz Júnior M.V.C., Bertoloni A.V., Oliveira G.B., Barroso J.P.R., Ferreira E.M. and Pires A.V. (2020). Low doses of monensin for lambs fed diets containing high level of ground flint corn. Sci. Agric. 78, 1-8.
Popova M., Morgavi D.P. and Martin C. (2013). Methanogens and methanogenesis in the rumens and ceca of lambs fed two different high-grain-content diets. Appl. Environ. Microbiol. 79, 1777-1786.
Rodrigues P.H.M. (2016). Control and manipulation of ruminal fermentation. Pp. 157-188 in Ruminology. D.D. Millen, M.D.B. Arrigoni and R.D.L. Pacheco, Eds. Springer, Switzerland.
Rodrigues P.H.M., Pinedo L.A., Solorzano L.A.R., Perna Junior F., Martins M.F., Castro A.L., Godoy G.L.A. and Marino C.T. (2012). Description of the in situ methodology for studying ruminal fermentation (micro-rumen) with a view to measuring methane production. Pp. 107-111 in Annu. Meet. Brazilian Soc. Zootec., Anais, Brazil.
Ruiz R., Albrecht G.L., Tedeschi, L.O., Jarvis G., Russel J.B. and Fox D.G. (2001). Effect of monensin on the performance and nitrogen utilization of lactating dairy cows consuming fresh forage. J. Dairy Sci. 84, 1717-1727.
Santos M.C.B., Araújo A.P.C., Venturellia B.C., Freitas Jr J.E., Barlettaa R.V., Gandra J.R., Paiva P.G., Acedo T.S. and Rennó F.P. (2019). Effects of increasing monensin doses on performance of mid-lactating Holstein cows. J. Appl. Anim. Res. 47, 297-302.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Seo J.K., Yang J., Kim H.J., Upadhaya S.D., Cho W.M. and Ha J.K. (2010). Effects of synchronization of carbohydrate and protein supply on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers. Asian-Australasian J. Anim. Sci. 23, 1455-1461.
Shibata M. and Terada F. (2010). Factors affecting methane production and mitigation in ruminants. J. Anim. Sci. 81, 2-10.
Stewart E.K., Beauchemin K.A., Dai X., MacAdam J.W., Christensen R.G. and Villalba J.J. (2019). Effect of tannin-containing hays on enteric methane emissions and nitrogen partitioning in beef cattle. J. Anim. Sci. 97, 3286-3299.
Teixeira D.A.A., Cappellozza B.I., Fernandes J.R., Nascimento K.S., Bonfim L.E.L.M., Lopes C.N., Ehrhardt J.A.C., Peres J.R., Harris S.A., Simas J.M.C. and Richardson L.F. (2020). Effects of monensin source on in vitro rumen fermentation characteristics and performance of Bos indicus beef bulls offered a high-concentrate diet. Transl. Anim. Sci. 4, 84-94.
Tiemann T.T., Lascano C.E., Wettstein H.R., Mayer A.C., Kreuzer M. and Hess H. D. (2008). Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal. 2, 790-799.
Tseu R.J., Perna Junior F., Carvalho R.F., Sene G.A., Tropaldi C.B., Peres A.H. and Rodrigues P.H.M. (2020). Effect of tannins and monensin on feeding behaviour, feed intake, digestive parameters and microbial efficiency of Nellore cows. Italian J. Anim. Sci. 19, 262-273.
Wanapat M., Cherdthong A., Phesatcha K. and Kang S. (2015). Dietary sources and their effects on animal production and environmental sustainability. Anim. Nutr. 1, 196-103.
Wang Z. and Goonewardene L.A. (2004). The use of MIXED models in the analysis of animal experiments with repeated measures data. Canadian J. Anim. Sci. 84, 1-11.
Wingard S.M., Vanzant E.S., Harmon D.L. and McLeod K.R. (2018). Effect of direct-fed microbials and monensin on in vitro fermentation of a high-forage diet. J. Anim. Sci. Res. 2, 1-7.
Ye D., Karnati S.K.R., Wagner B., Firkins J.L., Eastridge M.L. and Aldrich J.M. (2018). Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture. J. Dairy Sci. 101, 5069-5081.