Meta-Analysis of Methane Mitigation Strategies: Improved Predictions of Mitigation Potentials and Production Implications
Subject Areas : Camelآ. چیجیوک اوگبانا 1 , ا. رودینو سائتنان 2 *
1 - Department of Animal Production and Livestock Management, Michael Okpara University of Agriculture, Umudike, Nigeria
2 - Institute of Biological Environmental and Rural Science, Aberystwyth University, Aberystwyth, United Kingdom
Keywords: methane, meta-analysis, dairy cattle, methane abatement strategies,
Abstract :
The aim of this study was to use meta-analysis to identify the enteric methane (CH4) mitigation strategy that reduced CH4 emission without lowering production. To this end, a database initially developed was updated, compiling data from 61 publications (233 experiments) for various observations in dairy cattle on effects of hydrogen sink (H-sink), ionophore, lipid and concentrate feeds inclusion on enteric CH4 production, milk production and milk composition from dairy cattle. There was no significant effect (P>0.05) of H-sink and ionophore feeds inclusion on CH4 production while supplementation of lipid and concentrate considerably suppressed CH4 production (P<0.05). CH4 production per kg milk produced was not depressed with H-sink treatment (P<0.05). Lipids lightly increased CH4 production per kg milk from 26.19 g kg−1 for control to 29.12 g kg−1 for treatment (P>0.05), while concentrate and ionophore feeds inclusion decreased CH4 production per kg milk with no significant effect (P>0.05). There was a significant effect of concentrate on milk protein and milk yield, which increased from 23.27 kg d−1 for control to 26.52 kg d−1 for concentrate treated diet (P<0.05). Milk yield and milk protein was not significantly affected with H-sink, ionophore and lipid feeds inclusion (P>0.05). This meta-analysis demonstrates that lipid and concentrate feeds inclusion reduced CH4 emissions from dairy cattle without lowering their production.
Beauchemin K.A., Kreuzer M., O’Mara F. and McAllister T.A. (2008). Nutritional manag ment for enteric methane abatement: A review. Australian J. Exp. Agric. 48, 21-27.
Boadi D., Benchaar C., Chiquette J. and Masse D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian J. Anim. Sci. 84, 319-335.
Brask M., Lund P., Weisbjerg M.R., Hellwing A.L., Poulsen M., Larsen M.K. and Hvelplund T. (2013). Methane production and digestion of different physical forms of rapeseed as fat supplement in dairy cows. J. Dairy Sci. 96, 2356-2365.
Chilliard Y., Martin C., Rouel J. and Doreau M. (2009). Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 92, 5199-5211.
Dijkstra J., Bannink A., France J. and Kebreab E. (2007). Nutritional control to reduce environmental impacts of intensive dairy cattle systems. Pp. 411-435 in Proc. 7th Int. Symp. Nutr. Herbivor., Beijing, China.
Duffield T.F., Rabiee A.R. and Lean I.J. (2008). A meta-analysis of the impact of monensin in lactating dairy cattle. Part 2. Production effects. J. Dairy Sci. 91, 1347-1360.
Eckard R.J., Grainger C. and de Klein C.A.M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 130, 47-56.
Eugene M., Masse D., Chiquette J. and Benchaar C. (2008). Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Canadian J. Anim. Sci. 37, 331-334
Firkins J.L., Eastridge M.L., St-Pierre N.R. and Noftsger S.M. (2001). Effects of grain variability and processing on starch utilization by lactating dairy cattle. J. Anim. Sci. 79, 218-238.
FAO. (2010). Greenhouse Gas Emissions from the Dairy sector: A life Cycle Assessment. Food and Agriculture Organization, Rome, Italy.
Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falucci A. and Tempio G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Grainger C., Williams R., Clarke T., Wright A.D.G. and Eckard R.J. (2010). Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered forage and cereal grain diet. J. Dairy Sci. 93, 2612-2619.
Hegarty R.S. (1999). Reducing rumen methane emissions through elimination of rumen protozoa. Australian J. Agric. Res. 50, 1321-1328.
Herrero M., Grace D., Njuki J., Johnson N., Enahoro D., Silvestri S. and Rufino M.C. (2013). The roles of livestock in developing countries. Animal. 7, 3-18.
Hooijmans C.R., IntHout J., Ritskes-Hoitinga M. and Rovers M.M. (2014). Meta-analyses of animal studies: An introduction of a valuable instrument to further improve healthcare. ILAR J. 55(3), 418-426.
Hristov A.N., Oh J., Firkins J.R., Dijkistra J., Kebreab E., Waghorn G., Makkar H.P.S., Adesogan A.T., Yang W., Lee C., Gerber P.J., Henderson B. and tricarico J.M. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91, 5045-5069.
Johnson D.E., Ward G.M. and Ramsey J.J. (1996). Livestock methane: Current emissions and mitigation potential. Pp. 219-233 in Nutrient Management of Food Animals to Enhance and Protect the Environment. E.T. Kornegay, Ed. Lewis Publishers CRC Press Inc., Boca Raton, Florida.
Kingston-Smith A.H., Edwards J.E., Huws S., Kim E.J. and Abberton M. (2010). Symposium on food supply and quality in a climate-changed world session 2. Plant-based strategies towards minimising livestock long shadow. Proc. Nutr. Soc. 69, 613-620.
Lassey K.R. (2008). Livestock methane emissions and its perspectives in the global methane cycle. Australian J. Exp. Agric. 48, 114-118.
Martin C., Morgavi D.P. and Doreau M. (2010). Methane mitigation in ruminants: From microbe to the farm scale. Animal. 4, 351-365.
Moss A.R., Jouany J.P. and Newbold J. (2000). Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 49, 231-253.
Newbold C.J., Wallace R.J. and McIntosh F.M. (1996). Mode of action of the yeast Saccharamyces cerevisae as a feed additive for ruminants. British J. Nutr. 76, 249-261.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC, USA.
Odongo N.E., OR-Rashid M.M., Kebreab E., France J. and Mcbride B.W. (2007). Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J. Dairy Sci. 90, 1851-1858.
Patra A.K. (2013). The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 155, 244-254.
Sauer F.D., Fellner V., Kinsman R., Kramer J.K.G., Jackson H.A., Lee A.J. and Chen S. (1998). Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J. Anim. Sci. 76, 906-914.
Sauvant D., Schmidely P., Daudin J.J. and St-Pierre N.R. (2008). Meta-analyses of experimental data in animal nutrition. Animal. 2(8), 1203-1214.
Shafer S.R., Walthall C.L., Franzluebbers A.J., Scholten M., Meijs J., Clark H., Reisinger A., Yagi K., Roel A., Slattery B., Campbell I.D., McConkey B.G., Angers D.A., Soussana J.F. and Richard G. (2011). Emergence of the global research alliance on agricultural greenhouse gases. Carbon Manag. 2, 209-214.
Shingfield K.J., Beever D.E., Reynolds C.K., Gulati S.K., Humphries D.J., Lupoli B., Hervas G. and Griinari M.J. (2010). Effect of rumen protected conjugated linoleic acid on energy metabolism of dairy cows during early to mid-lactation. J. Dairy Sci. 87, 307-407.
Shingfield K.J., Jaakkola S. and Huhtanen P. (2002). Effect of forage conservation method, concentrate level and propylene glycol on intake, feeding behaviour and milk production of dairy cows. Anim. Sci. 74, 383-397.
Steinfeld H., Gerbe P., Wassennar T., Castel V., Rosales M. and de Haan C. (2006). Livestocks long shadow: Environmental issues and options. Food and Agriculture Organization, Rome, Italy.
St-Pierre N.R. (2007). Meta-analyses of experimental data in the animal science. R. Bras. Zootec. 36, 343-358.
Thornton P.K., Jones P.G., Owiyo T.M., Kruska R.L., Herrero M., Kristjanson P., Notenbaert A., Bekele N., Orindi V., Otiende B., Ochieng A., Bhadwal S., Anantram K., Nair S., Kumar V. and Kulkar U. (2006). Mapping climate vulnerability and poverty in Africa. International Livestock Research Institute, Nairobi, Kenya.
Ungerfeld E.M. and Kohn R.A. (2006). The role of thermodynamics in the control of ruminal fermentation. Pp. 55-85 in Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress.K. Sejrsen, T. Hvelplund and M.O. Nielsen, Eds. Wageningen, the Netherlands.
Ungerfeld E., Kohn R., Wallace R. and Newbold C. (2007). A meta-analysis of fumarate effects on methane production in ruminal batch cultures. J. Anim. Sci. 85, 2556-2563.
Van Zijderveld S.M., Gerrits W.J.J., Apajalahti J.A., Newbold J.R., Dijkstra J., Leng R.A. and Perdok H.B. (2010). Nitrate and sulphate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93, 5856-5866.
Van Zijderveld S.M., Gerrits W.J.J., Dijkstra J., Newbold J.R., Hulshof R.B.A. and Perdok H.B. (2011). Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 94, 4028-4038.
Veneman J.B., Saetnan E.R., Clare A.J. and Newbold C.J. (2016). MitiGate; an online meta-analysis database of mitigation strategies for enteric methane emissions. Sci. Total Environ. 572, 1166-1174.
Vesterinen H.M., Sena E.S., Egan K.J., Hirst T.C., Churolov L., Currie G.L., Antonic A., Howells D.W. and Macleod M.R. (2014). Meta-analysis of data from animal studies: A practical guide. J. Neurosci. Meth. 221, 92-102.
Williams Y.J., Popovski S.M., Rea S.M., Skillman L.C., Toovey A.F., Northwood K.S. and Wright A.D. (2009). A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 75, 1860-1866.