The Use of Enterococci as Probiotics in Poultry
Subject Areas : Camel
1 - Department of Animal Biotechnology, Agricultural Biotechnology Research Institute (ABRI), Rasht, Iran
Keywords: performance, immune system, Probiotic, broilers, <i>Enterococci</i>,
Abstract :
Enterococci are members of the lactic acid bacteria family and are responsible for many food spoilage and fermentations. Some strains of this microorganism are used as probiotics in humans and animals to improve host immunity. However, some Enterococci are important pathogens which cause severe infections. Some strains of Enterococci are resistant to common antibiotics. The Enterococcus faecium and Enterococcus faecalis strains are more common probiotics. Such probiotics are used as an alternative to growth promoting antibiotics, which their use has been restricted. In domestic animals, enterococcal probiotics are mostly used to cure or prevent pathogen infections and immune response and growth performance improvement. This review covers the reports on the application of Enterococcus genus as a functional probiotic in poultry. The results suggest that Enterococcus faecium is a safe probiotic and improve the immune system and performance of broiler chickens.
Amat C., Planas J.M. and Moreto M. (1996). Kinetics of hexose uptake by the small and large intestine of the chicken. American J. Physiol. 271, 1085-1089.
Awad W., Ghareeb K., Abdel-Raheem S. and Böhm J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88, 49-56.
Bovdisova I. and Capcarova M. (2015). Effect of a probiotic product on the content of cholesterol and triglycerides in the blood serum of laying hens. Pp. 42-45 in Proc. Conf. Young Sci., Nitra, Slovak Republic.
Caglar E., Kargul B. and Tanboga I. (2005). Bacteriotherapy and probiotics’ role on oral health. Oral Dis. 11, 131-137.
Cao G.T., Zeng X.F., Chen A.G., Zhou L., Zhang L., Xiao Y.P. and Yang C.M. (2013). Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult. Sci. 92, 2949-2955.
Capcarova M., Kolesarova A., Massanyi P. and Kovacik J. (2008). Selected blood biochemical and haematological parameters in turkeys after experimental probiotic Enterococcus faecium M 74 strain administration. Int. J. Poult. Sci. 7, 1194-1199.
Capcarova M., Weiss J., Hrncar C., Kolesarova A. and Pal G. (2010). Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. J. Anim. Physiol. Anim. Nutr. 94, 215-224.
Chichlowski M., Croom W.J., Edens F.W., MacBride B.W., Qiu R., Chiang C.C., Daniel L.R., Havenstein G.B. and Koci M.D. (2007). Microarchitecture spatial relationship between bacteria and ileal, cecal colonic in chicks fed a direct-fed microbial, PrimaLac, and salinomycin. Poult. Sci. 86, 1121-1132.
Crawford J.S. (1979). Probiotics in animal nutrition. Pp. 45-55 in Proc. Arkansas Nutr. Conf., Arkansas, USA.
Demeterová M., Mariscáková R., Pistl J., Nad P. and Samudovská A. (2009). The effect of the probiotic strain Enterococcus faecium DSM 7134 in combination with natural humic substances on performance and health of boiler chickens. Berl. Munch. Tierarztl. Wochenschr. 122, 370-377.
De Smet I., Van Hoorde L., De Saeyer M., Van De Woeslyne M. and Verstraele W. (1994). In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb. Ecol. Health Dis. 7, 315-329.
Devriese L.A., Pot B. and Collins M.D. (1993). Phenotypic identi fi cation of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J. Appl. Bacteriol. 75, 399-408.
Devriese L.A., Hommez J., Pot B. and Haesebrouck F. (1994). Identification and composition of the streptococcal and enterococcal flora of tonsils, intestines and faeces of pigs. J. Appl. Bacteriol. 77, 31-36.
Devriese L.A. and Pot B. (1995). The genus Enterococcus. Pp. 327-367 in The Lactic Acid Bacteria. : The Genera of Lactic Acid Bacteria. B.J.B. Wood and W.H. Holzapfel, Eds. Blackie Academic, London.
Devriese L.A., Hommez J., Wijfels R. and Haesebrouck F. (1991). Composition of the enterococcal and streptococcal intestinal flora of poultry. J. Appl. Bacteriol. 71, 46-50.
Devriese L., Baele M. and Butaye P. (2003). The genus Enterococcus. Pp. 101-107 in The Prokaryotes. M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt, Eds. Springer-Verlag Berlin Heidelberg Publisher, Germany.
Erkkila S. and Petaja E. (2000). Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300.
Foulquié-Moreno M.R., Sarantinopoulos P., Tsakalidou E. and De Vuyst L. (2006). The role and application of Enterococci in food and health. Int. J. Food Microbiol. 106, 1-24.
Franz C.M., Holzapfel W.H. and Stiles M.E. (1999). Enterococci at the crossroads of food science? Int. J. Food Microbiol. 47, 1-24.
Franz C.M. and Holzapfel W.H. (2006). The enterococci. Pp. 557-613 in Emerging Foodborne Pathogens. Y. Motarjemi and M. Adams, Eds. Woodhead Publishing, Sawston, United Kingdom.
Franz C.M., Huch M., Abriouel H., Holzapfel W. and Gálvez A. (2011). Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 151, 125-140.
Ghareeb K., Awad W.A., Mohnl M., Porta R., Biarnés M., Böhm J. and Schatzmayr G. (2012). Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens. Poult. Sci. 91, 1825-1832.
Grimes J.L., Rahimi S., Oviedo E., Sheldon B.W. and Santos F.B.O. (2008). Effects of a direct-fed microbial (Primalac) on turkey poult performance and susceptibility to oral Salmonella challenge. Poult. Sci. 87, 1464-1470.
Johansson M.E., Larsson J.M. and Hansson G.C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA. 108(1), 4659-4665.
Kacaniova M., Kmet V. and Cubon J. (2006). Effect of Enterococcus faecium on the digestive tract of poultry as a probiotic. Turkish J. Vet. Anim. Sci. 30, 291-298.
Kapila S., Vibha P. and Sinha R. (2009). Antioxidative and hypocholesterolemic effect of Lactobacillus casei ssp. Casei (biodefensive properties of Lactobacilli). Indian J. Med. Sci. 60, 361-370.
Karaffova V., Marcinkova E., Bobikova K., Herich R., Revajova V., Stasova D., Kavulova A., Levkutova M., Levkut Jr M., Laukova A., Sevcikova Z. and Levkut S.M. (2017). TLR4 and TLR21 expression, MIF, IFN-β, MID-2, CD14 activation, and sIgA production in chickens administered with EFAL41 strain challenged with Campylobacter jejuni. Folia Microbiol. 62, 89-97.
Kralik G., Milakovic Z. and Ivankovic S. (2004). Effect of probiotic supplementation on the performance and the composition of the intestinal microflora in broilers. Acta Agraria Kaposvá Riensis. 8, 23-31.
Laukova A., Guba P., Nemcova R. and Marekova M. (2004). Inhibition of Salmonella enterica serovar Dusseldorf by enterocin A in gnotobiotic Japanese quails. Vet. Med. Czech. 49, 47-51.
Laukova A., Pogany Simonova M., Chrastinova L., Kandri-cakova A., Scerbova J., Placha I., Cobanova K., Formelova Z., Ondruska L., Strkolcova G. and Strompfova V. (2017). Beneficial effect of bacteriocin strain Enterococcus du-rans ED26E/7 in model experiment using broiler rabbits. Czech J. Anim. Sci. 62, 168-177.
Leclercq H., Devriese L.A. and Mossel D.A.A. (1996). Taxonomical changes in intestinal (faecal) Enterococci and streptococci: Consequences on their use as indicators of faecal contamination in drinking water. J. Appl. Bacteriol. 81, 459-466.
Lee N.K., Yun C.W., Kim S.W., Chang H.I., Kang C.W. and Paik H.D. (2008). Screening of Lactobacilli derived from chicken feces and partial characterization of Lactobacillus acidophilus A12 as an animal probiotics. J. Microbiol. Biotechnol. 18, 338-342.
Levkut M., Pustl J., Lauková A., Revajova V., Herich R., Ševcíková Z., Strompfova V., Szaboova R. and Kokincakova T. (2009). Antimicrobial activity of Enterococcus faecium 55 against Salmonella enteritidis in chicks. Acta Vet. Hung. 57, 13-24.
Liong M.T. and Shah N.P. (2005). Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J. Dairy Sci. 88, 55-66.
Luo J., Zheng A., Meng K., Chang W., Bai Y., Li K., Cai H., Liu G. and Yao B. (2013). Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. J. Proteomics. 91, 226-241.
Majidi-Mosleh A., Sadeghi A., Mousavi S.N., Chamani M. and Zarei A. (2017). Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens. British Poult. Sci. 58, 40-45
Marin F., Luquet G., Mari B. and Medakovic D. (2008). Molluscan shell proteins: primary structure, origin, and evolution. Curr. Top. Dev. Biol. 80, 209-276.
Mitsuoka T. (2002). Research in intestinal flora and functional foods. J. Int. Microbiol. 15, 57-89.
Mountzouris K.C., Tsistsikos P., Kalamara E., Nitsh S., Schatzmayr G. and Fegeros K. (2007). Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modualting cecal microflora composition and metabolic activities. Poult. Sci. 86, 309-317.
Muir W.I., Bryden W.L. and Husbandw A.J. (1998). Evaluation of the efficacy of intraperitoneal immunization in reducing Salmonella typhimurium infection in chickens. Poult. Sci. 77, 1874-1883.
Panda A.K., Ramarao S.V., Raju M.V.L.N. and Sharma S.R. (2006). Dietary supplementation of Lactobacillus sporogenes on performance and serumbiochemico-lipid profile of broiler chickens. J. Polt. Sci. 43, 235-240.
Samli H.E., Senkoylu N., Koc F., Kanter M. and Agma A. (2007). Effects of Enterococcus faecium and dried whey on broiler perforance, gut histomorphology and intestinal microbiota. Arch. Anim. Nutr. 61, 42-49.
Samli H.E., Dezcan S., Koc F., Ozduven M.L., Okur A.A. and Senkoylu N. (2010). Effects of Enterococcus faecium supplementation and floor type on performance, morphology of erythrocytes and intestinal microbiota in broiler chickens. British Poult. Sci. 51, 564-568.
Schleifer K.H. and Kilpper-Bälz R. (1984). Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nomrev as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Bacteriol. 34, 31-34.
Shang L., Fukata M., Thirunarayanan N., Martin A.P., Arnaboldi P., Maussag D., Berin C., Unkeless J.C., Mayer L., Abreu M.T. and Lira S.A. (2008). TLR signaling in small intestinal epithelium promotes B cell recruitment and IgA production in lamina propria. Gastroenterology. 135, 529-538.
Sorum H. and Sunde M. (2001). Resistance to antibiotics in the normal flora of animals. Vet. Res. 32, 227-241.
Vahjen W., Jadamus A. and Simon O. (2002). Influence of probiotic Enterococcus faecium strain on selected bacterial groups in the small intestine of growing turkey poults. Arch. Anim. Nutr. 56, 419-429.
Willis W.L. and Reid L. (2008). Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poult. Sci. 87, 606-611.
Zhao X., Guo Y., Guo S. and Tan J. (2013). Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol. 97, 6477-6488.
Zheng A., Luo J., Meng K., Li J., Zhang S., Li K., Liu G., Cai H., Bryden W.L. and Yao B. (2015). Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium. BMC Genomics. 15, 1167-1171.
Zheng A., Luo J., Meng K., Li J., Bryden W.L., Chang W., Zhang S., Wang L.X.N., Liu G. and Yao B. (2016). Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics. 17, 89-97.