The Effect of Age and Location Pattern on the Morphometry of Purebred Redhead Barbary Ewes Reared under Arid Climate
Subject Areas : CamelS. Megdiche 1 , M. Ben Hamouda 2
1 - Département des Ressources Animales, Agroalimentaire et Développement Rural, Institut Supérieur Agronomique de Chott-Mariem, Université de Sousse, Sousse, Tunisia
2 - Institut National de la Recherche Agronomique de Tunisie, Ariana, Tunisia
Keywords: Ewe, fat-tail, Tunisia, Aridity, Barbary sheep breed, morphological measures,
Abstract :
Tunisian Barbary sheep are well-known for their rusticity and adaptation to harsh environmental conditions, especially, those of the arid climate. Morphometric characteristics of this main breed, although, have not been extensively investigated. In this study, we provide a morphological characterization, via eight body measures, of 249 ewes, aged from one to nine years, and sampled from farms, belonging to two locations, which have been maintained a purebred nucleus of this breed. Analysis of variance revealed that morphometric traits are partially influenced by age group and location with different significance levels. Ewes reached the full morphological dimension broadly between 4 and 6 years of age, except for the tail part that tends to be longer precociously at 1-2 years of age. Thus, having a longer tail at an early age (<2 years), in the genetic architecture of this fat-tailed breed, could represent a form of adaptation to the arid climate, which is the main hypothesis-driven from the present morphometric analysis. This study provides insights into the morphological peculiarities of purebred Barbary ewes under the particular arid environment and reflects some possible adaptive properties, giving rusticity to this indigenous fat-tailed sheep resource.
Abdallah J. and Abo Omar J. (2017). Multivariate analysis of morphological characteristics of Awassi sheep in the West Bank. J. Anim. Plant Sci. 27, 1115-1125.
Agaviezor B.O., Peters S.O., Adefenwa M.A., Yakubu A., Adebambo O.A., Ozoje M.O., Ikeobi C.O., Wheto M., Ajayi O.O., Amusan S.A., Ekundayo O.J., Sanni T.M., Okpeku M., Onasanya G.O., De Donato M., Ilori B.M., Kizilkaya K. and Imumorin I.G. (2012). Morphological and microsatellite DNA diversity of Nigerian indigenous sheep. J. Anim. Sci. Biotechnol. 3, 38-45.
Atti N. and Ben Hamouda M. (2004). Relationships among carcass composition and tail measurements in fat-tailed Barbarine sheep. Small Rumin. Res. 53, 151-155.
Atti N. and Bocquier F. (1999). Adaptation des brebis Barbarine à l’alternance sous-nutrution-réalimentation: Effets sur les tissus adipeux. Ann. Zootech. 48, 189-198.
Atti N., Bocquier F. and Khaldi G. (2004). Performance of the fat-tailed Barbarine sheep in its environment: adaptive capacity to alternation of underfeeding and re-feeding periods: A review. Anim. Res. 53, 165-176.
Bedhiaf-Romdhani S., Djemali M. and Bello A.A. (2008). Inventaire des différents écotypes de la race Barbarine en Tunisie. Anim. Genet. Resour. 43, 41-47.
Birteeb P.T., Peters S.O., Yakubu A., Adeleke M.A. and Ozoje M.O. (2012). Multivariate characterisation of the phenotypic traits of Djallonke and Sahel sheep in Northern Ghana. Trop. Anim. Health Prod. 45, 267-274.
Boujenane I. and Petit D. (2016). Between- and within-breed morphological variability in Moroccan sheep breeds. Anim. Genet. Resour. 58, 91-100.
De Mendiburu F. (2017). Agricolae: Statistical Procedures for Agricultural Research. Available at: https://CRAN.R-project.org/package=agricolae.
Djemali M., Aloulou R. and Sassi M.B. (1994). Adjustment factors and genetic and phenotypic parameters for growth traits of Barbarine lambs in Tunisia. Small Rumin. Res. 13, 41-47.
Ermias E. and Rege J.E.O. (2003). Characteristics of live animal allometric measurements associated with body fat in fat-tailed sheep. Livest. Prod. Sci. 81, 271-281.
Fabian D. and Flatt T. (2011). The Evolution of Aging. Nat. Educ. Knowl. 3, 9-17.
FAO. (2012). Phenotypic Characterization of Animal Genetic Resources. Food and Agriculture Organization of the United Nations, Rome, Italy.
Ghavi Hossein-Zadeh N. and Ghahremani D. (2017). Bayesian estimates of genetic parameters and genetic trends for morphometric traits and their relationship with yearling weight in Moghani sheep. Italian J. Anim. Sci. 17, 586-592.
Gladyshev V.N. (2016). Aging: Progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell. 15, 594-602.
Hamouda M.B. and Atti N. (2011). Comparison of growth curves of lamb fat tail measurements and their relationship with body weight in Babarine sheep. Small Rumin. Res. 95, 120-127.
Harkat S., Laoun A., Benali R., Outayeb D., Ferrouk M., Maftah A., Silva A.D. and Lafri M. (2015). Phenotypic characterization of the major sheep breed in Algeria. Rev. Méd Vét. 5, 138-147.
Hayelom M., Abegaz S.T. and Mekasha Y. (2014). Within breed phenotypic diversity of Sokota/Tigray Sheep in three selected zones of Tigray, Northern Ethiopia. J. Biol. Agric. Healthc. 4, 148-157.
Ibrahim M., Ahmad S., Swati Z. and Khan M. (2010). Genetic diversity in Balkhi, Hashtnagri and Michni sheep populations using SSR markers. African J. Biotechnol. 9, 7617-7628.
Jafari S. and Hashemi A. (2014). Estimation of genetic parameters for body measurements and their association with yearling liveweight in the Makuie sheep breed. South African J. Anim. Sci. 44, 140-147.
Khaldi Z., Haddad B., Souid S., Rouissi H., Ben Gara A. and Rekik B. (2011). Caracterisation phenotypique de la population ovine du sud ouest de la Tunisie. Anim. Genet. Resour. 49, 1-8.
Kunene N., Nesamvuni E.A. and Fossey A. (2007). Characterisation of Zulu (Nguni) sheep using linear body measurements and some environmental factors affecting these measurements, South African J. Anim. Sci. 37, 11-20.
Legaz E., Cervantes I., Pérez-Cabal M.A., de la Fuente L.F., Mártinez R., Goyache F. and Gutiérrez J.P. (2011). Multivariate characterisation of morphological traits in Assaf (Assaf.E) sheep. Small Rumin. Res. 100, 122-130.
Mavule B.S., Muchenje V., Bezuidenhout C.C. and Kunene N.W. (2013). Morphological structure of Zulu sheep based on principal component analysis of body measurements. Small Rumin. Res. 111, 23-30.
Petralia R.S., Mattson M.P. and Yao P.J. (2014). Aging and longevity in the simplest animals and the quest for immortality. Ageing Res. Rev. 16, 66-82.
R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Riva J., Rizzi R., Marelli S. and Cavalchini L.G. (2004). Body measurements in Bergamasca sheep. Small Rumin. Res. 55, 221-227.
Silva M.C., Lopes F.B., Vaz C.M.S., Paulini F., Montesinos I.S., Fioravanti M.C.S., McManus C. and Sereno J.R.B. (2013). Morphometric traits in Crioula Lanada in Southern Brazil. Small Rumin. Res. 110, 15-19.
Soulsbury C.D. and Halsey L.G. (2018). Does physical activity age wild animals? Front. Ecol. Evol. 6, 1-7.
Tabbaa M. (1998). The effect of age and sex on body and fat-tail dimensions of Awassi sheep in Jordan. Mu’tah J Res. Stud. 13, 63-74.
The Livestock Conservancy. (2020). Tunis Sheep. WebMD. https://www.livestockconservancy.org/index.php/heritage/internal/tunis. Accessed Sep. 2020.