In vitro Effect of the Inorganic Buffers in the Diets of Holstein Dairy Cow Varying in Forage: Concentrate Ratios on the Rumen Acid Load and Methane Emission
Subject Areas : CamelS. Fadaee 1 , n. دانش مسگران 2 * , A. Vakili 3
1 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords: methane, pH, buffering capacity, <i>in vitro</i>, acidogenecity value, buffer,
Abstract :
The present research was conducted aimed at using the approach involving the in vitro tests to evaluate effect by various inorganic buffers used in the diets of Holstein dairy cow on the dietary buffering capacity, ruminal acidogenecity value (AV), methane emission and assess the relationship between them. The buffers were sodium bicarbonate (SB), sodium sesquicarbonate (SSc), a commercial buffer [BEHINAÒ, (BH)], and potassium carbonate (PC). Basal diets were low forage [30% forage and 70% concentrate, (FC30:70)], mid forage [35% forage and 65% concentrate, (FC35:65)], and high forage [40% forage and 60% concentrate, (FC40:60)]. The buffers were added to the diets in the concentrations of 0.0, 8.0 and 12.0 g/kg dry matter (DM). In vitro pH, AV, and methane emission of the experimental diets were determined using the gas production technique. Results showed that buffering capacity was significantly the highest for the PC, followed by BH, SB, and SSc (143.3, 138.3, 136.6, and 135, respectively). Analysis of the acid load revealed that adding 8 g/kg of DM of SB in the FC40:60 diet led to the lowest AV (9.6 mg Ca g–1 DM). In addition, adding 12 g/kg of DM of BH in the FC30:70 and 8 g/kg of DM of SB in the FC35:65 diet caused the lowest (5.27) and highest (5.43) pH compared to the other treatments, respectively. The FC40:60 diet containing 8 g/kg DM of PC had the lowest level of methane emission (1.01 mL/0.20 g DM). Our findings demonstrated that the rumen acid load and methane emission may alter when the dietary buffering capacities are changed using the inorganic buffers.
Alfonso-Avila A.R., Charbonneau É., Chouinard P.Y., Tremblay G.F. and Gervais R. (2017). Potassium carbonate as a cation source for early-lactation dairy cows fed high-concentrate diets. J. Dairy Sci. 100, 1-15.
AOAC. (2000). Official Methods of Analysis. 17th Ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.
Aslam M., Tucker W.B., Hogue J.F., Vernon R.K. and Adams G.D. (1991). Controlled ruminal infusion of sodium bicarbonate. 2. Effects of dietary and infused buffer on ruminal milieu. J. Dairy Sci. 74, 3496-3503.
Chalupa W. and Kronfeld D.S. (1983). Sites of actions of dietary buffers in ruminants. Buffers Neutral. Electrol. Symp. Natl. West Des Moines, Iowa.
Counotte G.H.M., van't Klooster A.T., van der Kuilen J. and Prins R.A. (1979). An analysis of the buffer system in the rumen of dairy cattle. J. Anim. Sci. 49, 1536-1544.
Czerkawski J.W. (1986). An Introduction to Rumen Studies. Pergamon Press, New York.
Danesh Mesgaran M. and Stern M.D. (2005). Ruminal and post-ruminal protein disappearance of various feeds originating from Iranian plant varieties determined by the in situ mobile bag technique and alternative methods. Anim. Feed Sci. Technol. 118, 31-46.
Danesh Mesgaran M., Amini J. and Paktinat M. (2013). In vitro usage of various non-organic compounds to subdue acidogenic value and enhance the fermentation of alfalfa hay based diets by mixed rumen microbiota. Int. J. Livest. Prod. 4(10), 167-171.
Danesh Mesgaran S., Heravi Moussavi A., Jahani-Azizabadi H., Vakili A.R., Tabatabaiee F. and Danesh Mesgaran M. (2009). The effect of grain sources on in vitro rumen acid load of close-up dray cow diets. Pp. 146-147 in Proc. 11th Int. Symp. Rumin. Physiol. Wageningen, Netherlands.
Danesh Mesgaran S., Vakili A., Heravi Moosavi A. and Koolabadi G. (2011). The effect of rumen acid load on postpartum performance and blood metabolic responses in transition Holstein cows. American J. Anim. Vet. Sci. 6, 59-64.
Erdman R.A. (1988). Dietary buffering requirements of the lactating dairy cow: A review. J. Dairy Sci. 71, 3246-3252.
Evans J.L. and Ali R. (1967). Calcium utilization and feed efficiency in the growing rat as affected by dietary calcium, buffering capacity, lactose and EDTA. J. Nutr. 92, 417-427.
Franzolin R. and Dehority B.A. (1996). Effect of prolonged concentrate feeding on ruminal protozoa concentration. J. Anim. Sci. 74, 2803-2809.
Golder H.M. (2014). Increased understandings of ruminal acidosis in dairy cattle. Ph D. Thesis. The University of Sydney, Sydney, Australia.
Golder H.M., Celi P. and Lean I.J. (2014a). Ruminal acidosis in 21-month-old Holstein heifer. Canadian Vet. J. 55, 559-564.
Golder H.M., Celi P., Rabiee A.R. and Lean I.J. (2014b). Effects of feed additives on rumen and blood profiles during a starch and fructose challenge. J. Dairy Sci. 97, 985-1004.
Gottschalk G. (1986). Bacterial Metabolism. Springer-Verlag, New York.
Hogue J.F., Tucker W.B., Van Koevering M.T., Vernon R.K. and Adams G.D. (1991). Controlled ruminal infusion of sodium bicarbonate. 1. Influence of postfeeding infusion interval on ruminal milieu. J. Dairy Sci. 74, 1675-1685.
Hu W. and Murphy M.R. (2005). Statistical evaluation of early- and mid-lactation dairy cow responses to dietary sodium bicarbonate addition. Anim. Feed Sci. Technol. 119, 43-54.
Jafarpour Boroujeni M., Danesh Mesgaran M., Vakili A.R. and Naserian A.A. (2016). In vitro ruminal acid load and methane emission responses to supplemented lactating dairy cow diets with inorganic compounds varying in buffering capacities. Iranian J. Appl. Anim. Sci. 6(4), 769-775.
Jasaitis D.K., Wohlt J.E. and Evans J.I. (1987). Influence of fed ion content on buffering capacity of ruminant feedstuffs in vitro. J. Dairy Sci. 70, 1391-1403.
Kalscheur K.F., Teter B.B., Piperova L.S. and Erdman R.A. (1997). Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. J. Dairy Sci. 80, 2104-2114.
Keunen J.E., Plaizier J.C., Kyriazakis L., Duffield T.F., Widowski T.M., Lindinger M.I. and McBride B.W. (2002). Effects of a subacute ruminal acidosis model on the diet selection of dairy cows. J. Dairy Sci. 85, 3304-3313.
Khorrami B., Vakili A., Danesh Mesgaran M. and Klevenhusen F. (2015). Thyme and cinnamon essential oils: Potential alternatives for monensin as a rumen modifier in beef production systems. Anim. Feed Sci. Technol. 200, 8-16.
Koul V., Kumar U., Sareen V.K. and Singh S. (1998). Effect of sodium bicarbonate supplementation on ruminal microbial populations and metabolism in buffalo calves. Indian J. Anim. Sci. 68, 629-631.
Krause K.M. and Combs D.K. (2003). Effects of forage particle size, forage source, and grain fermentability on performance and ruminal pH in midlactation cows. J. Dairy Sci. 86, 1382-1397.
Krause K.M. and Oetzel G.R. (2006). Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 126, 215-236.
Krause K.M., Combs D.K. and Beauchemin K.A. (2002). Effects of particle size and grain fermentability in mid lactation cows. II. Ruminal pH and chewing activity. J. Dairy Sci. 85, 1947-1957.
Le Ruyet P. and Tucker B. (1992). Ruminal buffers: Temporal effects on buffering capacity and pH of ruminal fluid from cows fed a high concentrate diet. J. Dairy Sci. 75, 1069-1077.
Le Ruyet P., Tucker W.B., Hogue J.F., Aslam M. and Lema M. (1992). Influence of dietary fiber and buffer value index on the ruminal milieu of lactating dairy cows. J. Dairy Sci. 75, 2394-2408.
Lean I.J., Golder H.M. and Hall M.B. (2014). Feeding, evaluating, and controlling rumen function. Vet. Clin. North Am. Food Anim. Pract. 30, 539-575.
Levic J., Prodanovic O. and Sredanovic S. (2005). Understanding the buffering capacity in feedstuffs. Biotechnol. Anim. husband. 21, 309-313.
Lopez-Guisa J.M. and Satter L.D. (1991). Effect of forage source on retention of digesta markers applied to corn gluten meal and brewers grains for heifers. J. Dairy Sci. 74, 4297-4304.
Malekkhahi M., Tahmasbi A.M., Naserian A.A., Danesh Mesgaran M., Kleen J. and Parand A. (2015). Effects of essential oils, yeast culture and malate on rumen fermentation, blood metabolites, growth performance and nutrient digestibility of Baluchi lambs fed high concentrate diets. J. Anim. Physiol. Anim. Nutr. 99, 221-229.
McCann J.C., Luan S., Cardoso F.C., Derakhshani H., Khafipour E. and Loor J.J. (2016). Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front. Microbiol. 7, 701-709.
Menke K.H. and Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7-55.
Murphy M.R. (1982). Analyzing and presenting pH data. J. Dairy Sci. 65, 161-168.
Nelson W.F. and Satter L.D. (1992). Impact of stage of maturity and method of preservation of alfalfa on digestion in lactating cows. J. Dairy Sci. 75, 1571-1580.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC., USA.
Plaizier J.C., Danesh Mesgaran M., Derakhshani H., Golder H., Khafipour E., Kleen J.L., Lean I., Loor J., Penner G. and Zebeli Q. (2018). Review: Enhancing gastrointestinal health in dairy cows. Animal. 12(2), 399-418.
Plaizier J.C., Krause D.O., Gozho G.N. and McBride B.W. (2008). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J. 176, 21-31.
Russell J.B. and Chow J.M. (1993). Another theory for the action of ruminal buffer salts: decreased starch fermentation and propionate production. J. Dairy Sci. 76, 826-830.
Rustomo B., AlZahal O., Cant J.P., Fan M.Z., Duffield T.F., Odongo N.E. and McBride B.W. (2006a). Acidogenic value of feeds. II. Effects of rumen acid load from feeds on dry matter intake, ruminal pH, fiber degradability and milk production in the lactating dairy cow. Canadian J. Anim. Sci. 86, 119-126.
Rustomo B., AlZahal O., Odongo N.E., Duffield T.F. and McBride B.W. (2006b). Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow. J. Dairy Sci. 89, 4758-4768.
Santra A., Chaturvedi O.H., Tripathi M.K., Kumar R. and Karim S.A. (2003). Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Rumin. Res. 47, 203-212.
SAS Institute. (2002). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Sauvant D. and Giger-Reverdin S. (2007). Empirical modeling meta-analysis of digestive interactions and CH4 production in ruminants. Pp. 561-563 in Energy and Protein Metabolism and Nutrition. I. Ortigues-Marty, N. Miraux and W. Brand-Williams, Eds. Wageningen Academic, Wageningen, Nether-lands.
Staples C.R. and Lough D.S. (1989). Efficacy of supplemental dietary neutralizing agents for lactating dairy cows. A review. Anim. Feed Sci. Technol. 23, 277-303.
Staples C.R., Emanuele S.M., Ventura M., Beede D.K. and Schricker B.R. (1988). Effects of a new multielement buffer on production, ruminal environment, and blood minerals of lactating dairy cows. J. Dairy Sci. 71, 1573-1582.
Sulzberger S.A., Kalebich C.C., Melnichenko S. and Cardoso F.C. (2016). Effects of clay after a grain challenge on milk composition and on ruminal, blood, and fecal pH in Holstein cows. J. Dairy Sci. 99, 1-13.
Tilley J.M.A. and Terry R.A. (1963). A two-stage technique for the in vitro digestion of forage crops. J. British Grassland Soc. 18, 104-111.
Tripathi M.K., Santra A., Chaturvedi O.H. and Karim S.A. (2004). Effect of sodium bicarbonate supplementation on ruminal fluid pH, feed intake, nutrient utilization and growth of lambs fed high concentrate diets. Anim. Feed Sci. Technol. 111, 27-39.
Tucker W.B., Hogue J.F., Aslam M., Lema M., Martin M., Owens N., Shin I.S., LE Ruyet P. and Adams G.D. (1992). A buffer value index to evaluate effects of buffers on ruminal Milieu in cows fed high or low concentrate, silage, or hay diets. J. Dairy Sci. 75(3), 811-819.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Wadhwa D., Beck N.F.G., Borgida L.P., Dhanoa M.S. and Dewhurst R.J. (2001). Development of a simple in vitro assay for estimating net rumen acid load from diet ingredients. J. Dairy Sci. 84, 1109-1117.
West J.W., Coppock C.E., Millam K.Z., Nave D.H. and Labore J.M. (1987). Potassium carbonate as a potassium source and dietary buffer for lactating Holstein cows during hot weather. J. Dairy Sci. 70, 309-320.
Wolin M.J. (1975). Interactions between the bacterial species of the rumen. Pp. 134-148 in Digestion and Metabolism in the Ruminant. I.W. McDonald and A.C.I. Warner, Eds. University of New England Publishing Unit., Armidale, Australia.