Effect of Exogenous Enzymes on Nutrient Digestibility and Ruminal Fermentation of Holstein Cows
Subject Areas : CamelR.J. Tseu 1 , L.L.C. Paucar 2 , F. Perna Junior 3 , R.F. Carvalho 4 , R.G.S. Nogueira 5 , E.C.O. Cassiano 6 , D.C.Z. Vasquez 7 , L.A.R. Solórzano 8 , P.H.M. Rodrigues 9
1 - Department of Animal Production, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
2 - Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil|Department of Veterinary Medicine, INVITA-Maranganí Station, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos (UNMSM), Cusco 08258, Peru
3 - Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
4 - Department of Veterinary Medicine, Una Faculty, Una University Center, Sao Paulo, Brazil
5 - Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
6 - Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
7 - Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
8 - Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
9 - Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
Keywords: methane, digestibility, enzymes, relative energy loss, short-chain fatty acids,
Abstract :
This study aimed to evaluate the effect of different exogenous enzymes or their combination on nutrient digestibility and ruminal fermentation of Holstein cows. Five ruminally cannulated adult Holstein cows were distributed in a 5 × 5 Latin square design and received the same basal diet consisting of 30% of corn silage and 70% of concentrate but with inclusion of different exogenous enzymes comprising five treatments (control: diet without enzymes; amylase: basal diet with 7.5 g of amylase/cow/day; xylanase: basal diet with 15 g of xylanase/cow/day; cellulase + protease: basal diet with 7.5 g cellulase + protease/cow/day; and enzyme pool: basal diet with 30 g enzyme mixture (7.5 g of amylase, 15 g of xylanase and 7.5 g of cellulase + protease)/cow/day). Accordingly, the experiment was conducted in five periods of 23 days each. Therefore, data were collected to evaluate nutrient digestibility and ruminal fermentation parameters. The different exogenous enzymes or their combination (enzyme pool) did not affect (P>0.05) nutrient digestibility, ruminal pH, protozoa population, ammonia nitrogen and methane concentration and production. The enzyme combination and cellulase + protease increased (P<0.05) the concentration and production of acetate and propionate as well as total short-chain fatty acids, but did not significantly affect the relative energy loss of methane concering the other rumen fermentation products (acetate, propionate, and butyrate). Therefore, the dietary supplementation of different exogenous enzymes or their combination in Holstein cows did not improve feed value, but the enzyme combination has shown a tendency to reduce the relative energy loss of methane.
Abid K., Jabri J., Beckers Y., Yaich H., Malek A., Rekhis J. and Kamoun M. (2019). Effects of exogenous fibrolytic enzymes on the ruminal fermentation of agro-industrial by-products. South African J. Anim. Sci. 49, 612-618.
Amaro F.X., Kim D., Agarussi M.C.N., Silva V.P., Fernandes T., Arriola K.G., Jiang Y., Cervantes A.P., Adesogan A.T., Ferraretto L.F., Yu S., Li W. and Vyas D. (2021). Effects of exogenous α-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain. Transl. Anim. Sci. 5, 1-16.
Animut G., Puchala R., Goetsch A.L., Patra A.K., Sahlu T., Varel V.H. and Wells J. (2008). Methane emission by goats consuming diets with different levels of condensed tannins from Lespedeza. Anim. Feed Sci. Technol. 144, 212-227.
AOAC. (1995). Official Methods of Analysis. 12th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
AOCS. (2005). Official methods and recommended practices of the AOCS. 7th Ed. The American Oil Chemists' Society, Boulder, IL., USA.
Avellaneda J.H., Pinos-Rodríguez J.M., González S.S., Bárcena R., Hernández A., Cobos M., Hernández D. and Montañeze O. (2009). Effects of exogenous fibrolytic enzymes on ruminal fermentation and digestion of Guinea grass hay. Anim. Feed Sci. Technol. 149, 70-77.
Beauchemin K.A., Colombatto D., Morgavi D.P. and Yang W.Z. (2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. 81, 37-47.
Bowman G.R., Beauchemin K.A. and Shelford J.A. (2002). The proportion of the diet to which fibrolytic enzymes are added affects nutrient digestion by lactating dairy cows. J. Dairy Sci. 85, 3420-3429.
Brown M., Ponce C. and Pulikanti R. (2006). Adaptation of beef cattle to high-concentrate diets: Performance and ruminal metabolism. J. Anim. Sci. 84, 25-33.
Carega M.F.C.S. and Dantas A. (2017). Metano ruminal e o uso de taninos condensados como estratégia de mitigação. Nucl. Anim. 9, 51-64.
Carulla J.E., Kreuzer M., Machmuller A. and Hess H.D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian J. Agric. Res. 56, 961-970.
Chung Y.H., Zhou M., Holtshausen L., Alexander T.W., McAllister T.A., Guan L.L., Oba M. and Beauchemin K.A. (2012). A fibrolytic enzyme additive for lactating Holstein cow diets: Ruminal fermentation, rumen microbial populations, and enteric methane emissions. J. Dairy Sci. 95, 1419-1427.
Conceição D., Jacques R., Bento F., Simonetti A., Selbach P. and Camargo F. (2007). Redução de cromo hexavalente por bactérias isoladas de solos contaminados com cromo. Ciência Rural. 37, 1661-1667.
Dehority B.A. (1993). Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. CRC Press, Inc., Boca Raton, Florida.
Dehority B.A. (2003). Rumen Microbiology. Nottingham University Press, Nottingham, United Kingdom.
Devant M., Yu S., Genís S., Larsen T. and Wenting L. (2020). Effects of exogenous glucoamylase enzymes alone or in combination with a neutral protease on apparent total tract digestibility and feces D-lactate in crossbred angus bulls fed a ration rich in rolled corn. Animals. 10, 1-8.
Elghandour M.M.Y., Kholif A.E., Hernández J., Mariezcurrena M.D., López S., Camacho L.M., Márquez O. and Salem A.Z.M. (2016). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci. 61, 262-272.
Elsiddig M.A. (2019). A review on effects of exogenous fibrolytic enzymes in ruminant nutrition. Merit Res. J. Agric. Sci. Soil Sci. 7, 170-176.
Encinas C.M.A., Villalobos G.V., Viveros J.D., Flores G.C., Almora E.A. and Rangel F.C. (2018). Animal performance and nutrient digestibility of feedlot steers fed a diet supplemented with a mixture of direct-fed microbials and digestive enzymes. R. Bras. Zootec. 47, 1-7.
Environmental Protection Agency (EPA). (2012). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030. Washington, DC., USA.
Erwin E.S., Marco G.J. and Emery E.M. (1961). Volatile fatty acids analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44, 1768-1771.
Eun J.S. and Beauchemin K.A. (2005). Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. J. Dairy Sci. 88, 2140-2153.
Faramarzi-Garmroodi A., Danesh Mesgaran M. and Vakili A.R. (2016). In vitro estimation of microbial nitrogen production and ruminal fermentation responses to levels and applying duration of a commercial enzyme mixture. Iranian J. Appl. Anim. Sci. 6, 87-93.
Finlay B.J., Esteban G., Clarke K.J., Williams A.G., Embley T.M. and Hirt R.P. (1994). Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117, 157-162.
Foldager J. (1977). Protein requirement and non protein nitrogen for high producing cow in early lactation. Ph D Thesis. Michigan State Univ., East Lasing, Michigan.
Giraldo L.A., Tejido M.L., Ranilla M.J., Ramos S. and Carro M.D. (2008). Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci. 86, 1617-1623.
Golder H.M., Rossow H.A. and Lean I.J. (2019). Effects of in-feed enzymes on milk production and components, reproduction, and health in dairy cows. J. Dairy Sci. 102, 8011-8026.
IPCC. (2007). Climate Change 2007: The Physical Science Basis. In Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
IPCC. (2014). Climate change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
Jayanegara A., Leiber F. and Kreuzer M. (2012). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 96, 365-375.
Kaminski M., Kartanowics R., Jastrzebski D. and Kaminski M.M. (2003). Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography. J. Chromatogr. A. 989, 277-283.
Kulasek G.A. (1972). A micromethod for determination of urea in plasma, whole blood and blood cells using urease and phenol reagent. Polish Arch. Weter. 15, 801-810.
Lynch J. (2019). Availability of disaggregated greenhouse gas emissions from beef cattle production: A systematic review. Environ. Impact Assess. Rev. 76, 69-78.
Meschiatti M.A.P., Gouvêa V.N., Pellarin L.A., Batalha C.D.A., Biehl M.V., Acedo T.S., Dórea J.R.R., Tamassia L.F.M., Owens F.N. and Santos F.A.P. (2019). Feeding the combination of essential oils and exogenous α-amylase increases performance and carcass production of finishing beef cattle. J. Anim. Sci. 97, 456-471.
Mocherla V.A.N., Suryanarayana S. and Kavitha P. (2017). Role of exogenous fibrolytic enzymes in ruminant digestion-A review. Int. J. Curr. Microbiol. Appl. Sci. 11, 1400-1408.
Moharrery A. (2014). Influence of fibrolytic enzymes on the in vitro hydrolysis and fermentation of different types of roughages treatment. Iranian J. Appl. Anim. Sci. 4, 515-520.
Moya D., Mazzenga A., Holtshausen L., Cozzi G., González L.A., Calsamiglia S., Gibb D.G., Mcallister T.A., Beauchemin K.A. and Schwartzkopf-Genswein K. (2011). Feeding behavior and ruminal acidosis in beef cattle offered a total mixed ration or dietary components separately. J. Anim. Sci. 89, 520-530.
Neumann M., Leão G.F.M., Vigne G.L.D., Dos Santos C.L., Venancio B.J. and Dochwat A. (2018). Xylanase - complex efficacy in high-energy diet for bulls finished in feedlot. Act. Sci. Anim. Sci. 40, 1-7.
Patra A.K. and Saxena J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Food Sci. Agric. 91, 24-37.
Penner G.B. and Beauchemin K.A. (2010). Variation among cows in their susceptibility to acidosis: Challenge or opportunity. Adv. Dairy Sci. Technol. 22, 173-187.
Penner G.B., Beauchemin K.A. and Mutsvangwa T. (2007). Severity of ruminal acidosis in primiparous Holstein cows during the periparturient period. J. Dairy Sci. 90, 365-375.
Perna Junior F., Cassiano E.C.O., Martins M.F., Romero L.A., Zapata D.C.V., Pinedo L.A., Marino C.T. and Rodrigues P.H.M. (2017). Effect of tannins-rich extract from Acacia mearnsii or monensin as feed additives on ruminal fermentation efficiency in cattle. Livest. Sci. 203, 21-29.
Peters A., Lebzien P., Meyer U., Borchert U., Bulang M. and Flachowsky G. (2010). Effect of exogenous fibrolytic enzymes on ruminal fermentation and nutrient digestion in dairy cows. Arch. Anim. Nutr. 64, 221-237.
Popova M., Morgavi D.P. and Martin C. (2013). Methanogens and methanogenesis in the rumens and ceca of lambs fed two different high-grain-content diets. Appl. Environ. Microbiol. 79, 1777-1786.
Ran T., Saleem A.M., Shen Y., Ribeiro Jr G.O., Beauchemin K.A., Tsang A., Yang W. and McAllister T.A. (2019). Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet. J. Anim. Sci. 97, 3578-3587.
Rodrigues P.H.M., Pinedo L.A., Solorzano L.A.R., Perna Junior F., Martins M.F., Castro A.L., Godoy G.L.A. and Marino C.T. (2012). Descrição da metodologia ex-situ de estudo da fermentação ruminal (micro-rúmen) com vista à mensuração da produção de metano. Pp. 55-59 in Annu. Meet. Basileira Soc. Zootech., Brasilia DF.
Rodrigues P.H.M. (2016). Control and manipulation of ruminal fermentation. Pp. 157-188 in Ruminology. D.D. Millen, M.D.B. Arrigoni and R.D.L. Pacheco, Eds. Springer International Publishing, Switzerland.
Rojo R., Kholif A.E., Salem A.Z.M., Elghandour M.M.Y., Odongo N.E., Montes de Oca R., Rivero N. and Alonso M.U. (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. J. Agric. Sci. 153, 1514-1523.
Salem A.Z.M., Gado H.M., Colombatto D. and Elghandour M.M.Y. (2013). Effects of exogenous enzymes on nutrient digestibility, ruminal fermentation and growth performance in beef steers. Livest. Sci. 154, 69-73.
SAS Institute. (2013). SAS®/STAT Software, Release 9.3. SAS Institute, Inc., Cary, NC. USA.
Seo J.K., Yang J., Kim H.J., Upadhaya S.D., Cho W.M. and Ha J.K. (2010). Effects of synchronization of carbohydrate and protein supply on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers. Asian-Australasian J. Anim. Sci. 23, 1455-1461.
Shibata M. and Terada F. (2010). Factors affecting methane production and mitigation in ruminants. J. Anim. Sci. 81, 2-10.
Silva T.H., Takiya C.S., Vendramini T.H.A., Ferreira de Jesus E., Zanferari F. and Rennó F.P. (2016). Effects of dietary fibrolytic enzymes on chewing time, ruminal fermentation, and performance of mid-lactating dairy cows. Anim. Feed Sci. Technol. 221, 35-43.
Song S.D., Chen G.J., Guo C.H., Rao K.Q., Gao Y.H., Peng Z.L., Zhang Z.F., Bai X., Wang Y., Wanga B.X., Chen Z.H., Fu X.S. and Zhu W.L. (2018). Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black goats. Anim. Feed Sci. Technol. 236, 170-177.
Sujani S. and Seresinhe R.T. (2015). Exogenous Enzymes in Ruminant Nutrition: A Review. Asian J. Anim. Sci. 3, 85-99.
Tiemann T.T., Lascano C.E., Wettstein H.R., Mayer A.C., Kreuzer M. and Hess H.D. (2008). Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal. 2, 790-799.
Tirado-González D.N., Miranda-Romero L.A., Ruíz-Flores A., Medina-Cuéllar S.E., Ramírez-Valverde R. and Tirado-Estrada G. (2017). Meta-analysis: Effects of exogenous fibrolytic enzymes in ruminant diets. J. Appl. Anim. Res. 46, 771-783.
Toseti L.B., Goulart R.S., Gouvêa V.N., Acedo T.S., Vasconcellos G.S., Pires A.V., Leme P.R., Netto A.S. and Silva S.L. (2020). Effects of a blend of essential oils and exogenous α-amylase in diets containing different roughage sources for finishing beef cattle. Anim. Feed Sci. Technol. 269, 114643-114649.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysscharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Vera J.M., Smith A.H., ZoBell D.R., Young A.J. and Eun J.S. (2012). Effects of an exogenous proteolytic enzyme on growth performance of beef steers and in vitro ruminal fermentation in continuous cultures. Prof. Anim. Sci. 28, 452-463.
Wanapat M., Cherdthong A., Phesatcha K. and Kang S. (2015). Dietary sources and their effects on animal production and environmental sustainability. Anim. Nutr. 1, 196-203.
Wang Z. and Goonewardene L.A. (2004). The use of MIXED models in the analysis of animal experiments with repeated measures data. Canadian J. Anim. Sci. 84, 1-11.
Yang Y., Ferreira G., Corl B.A. and Campbell B.T. (2019). Production performance, nutrient digestibility, and milk fatty acid profile of lactating dairy cows fed corn silage- or sorghum silage-based diets with and without xylanase supplementation. J. Dairy Sci. 102, 2266-2274.
Zilio E.M.C., Del Valle T.A., Ghizzi L.G., Takiya C.S., Dias M.S.S., Nunes A.T., Silva G.G. and Rennó F.P. (2019). Effects of exogenous fibrolytic and amylolytic enzymes on ruminal fermentation and performance of mid-lactation dairy cows. J. Dairy Sci. 102, 4179-4189.