The Effect of Native Grass Substitution Using Jengkol (Archidendron jiringa) Peel and Leaves Powder on in vitro Rumen Fermentation
Subject Areas : Camelن. هیدایا 1 , ر. لوبیس 2 , ک.گ. ویریاوان 3 , س. سوهارتی 4 , و. ریتا 5 , ر. زورینا 6
1 - Department of Animal Science, Faculty of Agriculture, Bengkulu Muhammadiyah University, Bengkulu, Indonesia|Department of Animal Science, Faculty of Agriculture, Tidar University, Magelang, Indonesia
2 - Department of Biology, Faculty of Teacher Training and Education, Bengkulu Muhammadiyah University, Bengkulu, Indonesia
3 - Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
4 - Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
5 - Department of Animal Science, Faculty of Agriculture, Bengkulu Muhammadiyah University, Bengkulu, Indonesia
6 - Department of Animal Science, Faculty of Agriculture, Bengkulu Muhammadiyah University, Bengkulu, Indonesia
Keywords: methane, fermentation characteristic, jengkol leave, jengkol peel, rumen microbes,
Abstract :
The effect of substituting native grass with jengkol (Archidendron jiringa) by-product on fermentation characteristics, rumen microbial profile, methane production, and hydrogen balance using in vitro method was investigated. Seven treatments (different composition of native grass, jengkol peel, jengkol leaves, and concentrate) with five replications in a block randomized design were used. Substitution of native grass with jengkol peel powder up to 22.5% decreased rumen pH and protozoa, increased N-NH3, did not change feed digestibility (dry matter digestibility (DMD) and organic matter digestibility (OMD)), total and proportional volatile fatty acid (VFA) production, microbial protein synthesis, methane production, and hydrogen balance. The use of jengkol leaves powder up to 45% decreased rumen pH, increased N-NH3, feed digestibility (DMD and DMO) and microbial protein synthesis, but did not affect total and proportional VFA production, protozoa population, hydrogen balance, and methane production. It is concluded that native grass can be substituted with jengkol peel powder up to 22.5% and leaves powder up to 45%.
Andrade-Montemayor H., Garca T.G. and Kawas J. (2009). Ruminal fermentation modification of protein and carbohydrate by means of roasted and estimation of microbial protein synthesis. R. Bras. Zootec. 38, 277-291.
Azevêdo J.A.G., Filho V., Pina D.S., Detmann E., Pireira L.G.R., Valadares R.F.D., Fernandes H.J., Silva L.F.C. and Benedeti P.B. (2012). Nutritional diversity of agricultural and agro-industrial by-products for ruminant feeding. Arq. Bras. Med. Vet. Zootec. 64, 1246-1255.
Badan Pusat Statistik. (2018). Produksi Tanaman Sayuran Jengkol (ton). Available at: https://www.bps.go.id/site/resultTab.
Bodas R., Prieto N., Garcia-Gonzalez R., Andres S., Giraldez F.J. and Lopez S. (2012). Manupulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 176, 78-93.
Boguhn J., Kluth H. and Rodehutscord M. (2006). Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro. J. Dairy Sci. 89, 1580-1591.
Busquet M., Calsamiglia S., Ferret A. and Kamel C. (2006). Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89, 761-771.
Clark M.J., Klusmeyer T.H. and Cameron M.R. (1992). Microbial-protein synthesis and flow of nitrogen fraction to the duodenum of dairy-cows. J. Dairy Sci. 75, 2304-2323.
Dewi D. (2002). Hidrolisis limbah hasil pertanian secara enzimatik. J. Akta Agrosia. 5, 67-71.
General Laboratory Procedures. (1966). Report of Dairy Science. University of Wisconsin, Madison, USA.
Gunun P., Gunun N., Cherdthong A., Wanapat M., Polyorach S., Sirilaophaisan S., Wachirapakorn C. and Kang S. (2017). In vitro rumen fermentation and methane production as affected by rambutan peel powder. J. Appl. Anim. Res. 11, 1-6.
Hartadi H., Reksohadiprodjo S., Lebdosukojo S. and Tillman A.D. (1980). Tabel Komposisi Pakan untuk Indonesia. Gajah Mada University Press, Yogyakarta, Indonesia.
Hidayah N., Lubis R., Wiryawan K.G. and Suharti S. (2019). Phenotypic identification, nutrients content, bioactive compounds of two jengkol (Archidendron jiringa) varieties from Bengkulu, Indonesia and their potentials as ruminant feed. Biodiversitas. 20, 1671-1680.
Hu W.L., Liu J.X., Ye J.A., Wu Y.M. and Guo Y.Q. (2005). Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 120, 333-341.
International Atomic Energy Agency. (1997). Estimation of Rumen Microbial Protein Production from Purine Derivatives in Urine. Vienna, Austria.
Istiqomah L., Herdian H., Febrisantosa A. and Putra D. (2011). Waru leaf (Hibiscus tiliaceus) as saponin source on in vitro ruminal fermentation characteristic. J. Indonesian Trop. Anim. Agric. 36, 43-49.
Jayanegara A., Makkar H.P.S. and Becker K. (2015). Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Med Peternakan. 38, 57-63.
Jayanegara A., Sofyan A., Makkar H.P.S. and Becker K. (2009). Kinetika produksi gas, kecernaan bahan organik dan produksi gas metana in vitro pada hay dan jerami yang disuplementasi hijauan mengandung tanin. Med Peternakan. 32, 120-129.
Jeon S., Sohn K.N. and Seo S. (2016). Evaluation of feed value of a by-product of pickled radish for ruminants: analyses of nutrient composition, storage stability, and in vitro ruminal fermentation. J. Anim. Sci. Technol. 58, 34-43.
Kasapidou E., Sossidou E. and Mitlianga P. (2015). Fruit and vegetable coproducts as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture. 5, 1020-1034.
Lowry O.H., Rosenbrough N.J., Farr A.L. and Randall R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-270.
Makkar H.P.S., Sharma O.P., Dawra R.K. and Negi S.S. (1982). Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65, 2170-2173.
McDonald P., Edward R.A., Greenhalgh J.F.D. and Morgan C.A. (2002). Animal Nutrition. Scientific and Tech John Willey and Sons. Inc., New York, USA.
Mitsumori M., Shinkai T., Takenaka A., Enishi O., Higuchi K., Kobayashi Y., Nonaka I., Asanuma N., Denman S.E. and McSweeney C.S. (2012). Responses in digestion rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. British J. Nutr. 108, 482-491.
Moss A.R., Jouany J.P. and Newbold J. (2000). Methane production by ruminants: Its contribution to global warming. Annal Zootechnol. 49, 231-253.
Nuswantara L.K., Soejono M. and Widyobroto B.P. (2001). Sintesis protein mikroba pada sapi peranakan ongole dan kerbau yang diberi pakan tunggal glirisidia, jerami jagung dan kaliandra. Agrosains. 14, 165-174.
Patra A.K. and Saxena J. (2009). A review of the effect and mode of action of saponins on microbial population and fermentation in the rumen and ruminant production. Nut. Research Rev. 22, 204
Patra A.K. and Yu Z. (2014). Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl. Microbiol. Biotechnol. 98, 897-905.
Patra A.K., Stiverson J. and Yu Z. (2012). Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro. J. Appl. Microbiol. 113, 1329-1340.
Poungchompu O., Wanapat M., Wachirapakorn C., Wanapat S. and Cherthong A. (2009). Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63, 389-400.
Puchala R., Min B.R., Goetsch A.L. and Sahlo T. (2005). The effect of a condensed tannin-containing forage on methane emission of goats. J. Anim. Sci. 83, 182-188.
Rodríguez R., Sosa A. and Rodríguez Y. (2007). Microbial protein synthesis in rumen and its importance to ruminants. Cuban J. Agric. Sci. 41, 287-294.
Santoso B., Kilmaskossub A. and Sambodo P. (2007). Effects of saponin from Biophytum petersianum Klotzsch on ruminal fermentation, microbial protein synthesis and nitrogen utilization in goats. Anim. Feed Sci. Technol. 137, 58-68.
Sirohi S.K., Pandey N., Singh B. and Puniya A.K. (2001). Rumen methanogen: A review. Indian J. Microbiol. 50, 253-262.
Sliwi´nski B.J., Soliva C.R., Machmüller A. and Kreuzer M. (2002). Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Anim. Feed Sci. Technol. 101, 101-114.
Steel R.G.D. and Torrie J.H. (1980). Principles and Procedures of Statistics. McGraw-Hill Book Co. Inc., New York, USA.
Tilley J.M.A. and Terry R.A. (1963). A two-stage technique for the in vitro digestion of forage crops. J. British Grassland Soc. 18, 104-111.
Tona G.O. (2014). Investigation of proximate composition and in vitro fermentation characteristics of Panicum maximum, Gliricidia sepium with cassava peels as feed for ruminants in Nigeria. Int. J. Curr. Microbiol. Appl. Sci. 3, 188-197.
Van Dyk J.S., Gama R., Morrison D., Swart S. and Pletschke B.I. (2013). Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew Sust. Energ. Rev. 26, 521-531.
Wallace R.J., McEwan N.R., McIntosh F.M., Teferedegne B. and New Bold C. (2002). Natural product as manipulators of rumen fermentation. Asian-Australasian J. Anim. Feed Sci. Technol. 15, 1458-1468.