In silico Methods for Modeling of Genomic Regions for Immunological and Metabolic Gene Modulating to Stress Response in Chicken: Where We Are?
Subject Areas : CamelM.S. Ekhtiyari 1 , A.S. Sadr 2 * , M. Shirali 3 , A. Javanmard 4 *
1 - Department of Biochemistry, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
2 - Aquaculture Research Center-South of Iran, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran
3 - Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, United Kingdom
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Keywords: genomics, controlling homeostasis, gene networking, stress response,
Abstract :
Traditionally, commercial broilers are not well adapted and currently subjected to a variety of environmental challenges. In recent years, researchers have shown an increased interest in stress as one of the greatest environmental challenges to the profitability of sustainable intensive poultry production. In this scenario, understanding the complexity of the molecular basis and genomics of the stress response is critical to successful breeding programs for climate-adapted chickens. Recently, numerous popular studies have attempted to identify candidate genes that control stress responses in chickens. However, a number of questions regarding the choice of stress response remain unanswered or inadequately answered regarding the number of lead candidate genes that control components of the non-infectious and infectious stress response. With this motivation, 89 journal articles were collected for the primary investigation and those with low validity were excluded from further analysis. In short, we used three types of information sources, namely: text-based systematic review, in silico modeling, and both network and pathway approaches, to introduce more effective and bio-indicators of gene-controlling stress responses in chickens through older literature. Gene ontology (GO) and pathway networking of candidate gene associated with stress was loaded into Cytoscape for analysis. The result provides additional evidence and highlights, including nearly 9 candidate genes. According to published studies, CRYAB, HSP90AA1, IL6, HSPA2, HSF2, HSPB1, HSF3, PLK1, BAG3 are mostly associated with non-infectious and infectious stressors and may deserve further attention. String database analysis illustrated role of highlighted gene in multiple cellular task and functionally such as ATPase activity, cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfold proteins and the formation and dissociation of protein complexes. Obtained information from Animal QTL database indicated important role of chromosomes numbers 2, 3, 4, 5, 12, 14 and 24 associated with stress resistance and susceptibility. On this basis, this report attempts to find out which genomic regions control homeostasis and promote cell survival, molecular transport and cell signaling.
Adji A.V., Plumeriastuti H., Ma’ruf A. and Legowo D. (2019). Histopathological alterations of ceca in broiler chickens (Gallus gallus) exposed to chronic heat stress. J. World's Poult. Res. 9(3), 211-217.
Åkerfelt M., Morimoto R.I. and Sistonen L. (2010). Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11(8), 545-555.
Åkerfelt M., Trouillet D., Mezger V. and Sistonen L.E.A. (2007). Heat shock factors at a crossroad between stress and development. Ann. New York Acad. Sci. 1113(1), 15-27.
Al-Zghoul M.B., Saleh K.M. and Ababneh M.M.K. (2019). Effects of pre-hatch thermal manipulation and post-hatch acute heat stress on the mRNA expression of interleukin-6 and genes involved in its induction pathways in 2 broiler chicken breeds. Poult. Sci. J. 98(4), 1805-1819.
Asteriti I.A., Rensen W.M., Lindon C., Lavia P. and Guarguaglini G. (2010). The Aurora-A/TPX2 complex: A novel oncogenic holoenzyme? Biochim. Biophys. Acta. 1806(2), 230-239.
Bessei W. (2006). Welfare of broilers: A review. World's Poult. Sci. J. 62(3), 455-466.
Bogusławska-Tryk M., Piotrowska A. and Burlikowska K. (2012). Dietary fructans and their potential beneficial influence on health and performance parameters in broiler chickens. J. Cent. Eur. Agric. 13(2), 125-134.
Brede M., Nagy G.B., Philipp M., Sørensen J.B., Lohse M.J. and Hein L. (2003). Differential control of adrenal and sympathetic catecholamine release by α2-adrenoceptor subtypes. J. Mol. Endocrinol. 17(8), 1640-1646.
Casenghi M., Meraldi P., Weinhart U., Duncan P.I., Körner R. and Nigg E.A. (2003). Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell. 5(1), 113-125.
Chang Y., Östling P., Åkerfelt M., Trouillet D., Rallu M., Gitton Y., Fatimy R., Fardeau V., Le Crom S., Morange M., Sistonen L. and Mezger V. (2006). Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev. 20(7), 836-847.
Chen X., Li R. and Geng Z. (2015). Cold stress initiates the Nrf2/UGT1A1/L-FABP signaling pathway in chickens. Poult. Sci. J. 94(11), 2597-2603.
Cheung A.S., de Rooy C., Levinger I., Rana K., Clarke M.V., How J.M., Garnham A., McLean C., Zajac J.D., Davey R.A., Grossmann M. and Davey R.A. (2017). Actin alpha cardiac muscle 1 gene expression is upregulated in the skeletal muscle of men undergoing androgen deprivation therapy for prostate cancer. J. Steroid Biochem. Mol. 174, 56-64.
Ciocca D.R., Cappello F., Cuello-Carrion E. and Arrigo A.P. (2015). Molecular approaches to target heat shock proteins for cancer treatment. Front. Clin. Drug Res. 2, 3-47.
Creagh E., Sheehan D. and Cotter T. (2000). Heat shock proteins–modulators of apoptosis in tumour cells. Leukemia. 14(7), 1161-1173.
Csermely P., Kajtar J., Hollosi M., Jalsovszky G., Holly S., Kahn C.R. and Somogyi J. (1993). ATP induces a conformational change of the 90-kDa heat shock protein (HSP90). J. Biol. Chem. 268(3), 1901-1907.
De Graauw M., Tijdens I., Cramer R., Corless S., Timms J.F. and Van De Water B. (2005). Heat shock protein 27 is the major differentially phosphorylated protein involved in renal epithelial cellular stress response and controls focal adhesion organization and apoptosis. J. Biol. Chem. 280(33), 29885-29898.
De Groef B., Goris N., Arckens L., Kühn E.R. and Darras V.M. (2003). Corticotrophin-releasing hormone (CRH)-induced thyrotropin release is directly mediated through CRH receptor type 2 on thyrotropes. Endocrinology. 144(12), 5537-5544.
Dobson Stone C., Velayos Baeza A., Filippone L.A., Westbury S., Storch A., Erdmann T. and Dotti M.T. (2004). Chorein detection for the diagnosis of chorea acanthocytosis. Ann. Neurol. Official J. American Neurol. Assoc. Child Neurol. Soc. 56(2), 299-302.
Ebeid T., Suzuki T. and Sugiyama T. (2012). High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult. Sci. J. 91(9), 2282-2287.
Elfwing M., Fallahshahroudi A., Lindgren I., Jensen P. and Altimiras J. (2014). The strong selective sweep candidate gene ADRA2C does not explain domestication related changes in the stress response of chickens. PLoS One. 9, e103218.
Fink A.L. (1999). Chaperone-mediated protein folding. Physiol. Rev. 79(2), 425-449.
Fujimoto M. and Nakai A. (2010). The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 277(20), 4112-4125.
Fujimoto M., Hayashida N., Katoh T., Oshima K., Shinkawa T., Prakasam R., Tan K., Inouye S., Takii R., Nakai A. and Nakai A. (2010). A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. J. Mol. Cell Biol. 21(1), 106-116.
Gaudet P., Livstone M.S., Lewis S.E. and Thomas P.D. (2011). Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 12(5), 449-462.
Ginsberg H.N., Zhang Y.L. and Hernandez-Ono A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Arch. Med. Res. 36(3), 232-240.
Groenendijk B.C., Van der Heiden K., Hierck B.P. and Poelmann R.E. (2007). The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology. 22(6), 380-389.
Hafeez A., Akram W., Sultan A., Konca Y., Ayasan T., Naz S., Shahzada W. and Khan R.U. (2021). Effect of dietary inclusion of taurine on performance, carcass characteristics and muscle micro-measurements in broilers under cyclic heat stress. Italian J. Anim. Sci. 20(1), 872-877.
Hietbrink F., Koenderman L., Rijkers G.T. and Leenen L.P. (2006). Trauma: The role of the innate immune system. World J. Emerg. Surg. 1(1), 15-27.
Huang J., Cui H., Peng X., Fang J., Zuo Z., Deng J. and Wu B. (2013). The association between splenocyte apoptosis and alterations of Bax, Bcl-2 and caspase-3 mRNA expression, and oxidative stress induced by dietary nickel chloride in broilers. Int. J. Environ. Res. Public Health. 10(12), 7310-7326.
Huising M., Van Schooten C., Taverne-Thiele A., Hermsen T., Verburg-van Kemenade B. and Flik G. (2004). Structural characterisation of a cyprinid (Cyprinuscarpio) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. J. Mol. Endocrinol. 32(3), 627-648.
Javadi Esfehani Y. (2014). CEP78, a novel centrosomal protein. MS Thesis. University of Montreal, Montreal, Canada.
Jiang H.K., Qiu G.R., Li-Ling J., Xin N. and Sun K.L. (2010). Reduced ACTC1 expression might play a role in the onset of congenital heart disease by inducing cardio-myocyte apoptosis. Circul. J. 74(11), 2410-2418.
John Peter A.T., Herrmann B., Antunes D., Rapaport D., Dimmer K.S. and Kornmann B. (2017). Vps13-Mcp1 interact at vacuole–mitochondria interfaces and bypass ER–mitochondria contact sites. J. Cell Biol. 216(10), 3219-3229.
Joseph-Bravo P., Jaimes-Hoy L. and Charli J.L. (2016). Advances in TRH signaling. Rev Endocr Metab Disord. 17(4), 545-558.
Judge L.M., Perez-Bermejo J.A., Truong A., Ribeiro A.J., Yoo J.C., Mandegar M.A., Huebsch N., Kaake R.M., So P.L., Srivastava D., Pruitt B.L., Krogan N.J. and Conklin B.R. (2017). A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight. 2(14), 1-17.
Khan R.U., Naz S., Ullah H., Ullah Q., Laudadio V., Qudratullah Bozzo G. and Tufarelli V. (2021). Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim. Biotechnol. 32, 1-10.
Kim S.A., Yoon J.H., Lee S.H. and Ahn S.G. (2005). Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J. Biol. Chem. 280(13), 12653-12657.
Kim S.Y., Post R.M. and Rosen J.B. (1996). Differential regulation of basal and kindling-induced TRH mRNA expression by thyroid hormone in the hypothalamic and limbic structures. Neuroendocrinology. 63(3), 297-304.
Koul H.K., Pal M. and Koul S. (2013). Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer. 4(9), 342-359.
Krishnamurthy K., Kanagasabai R., Druhan L.J. and Ilangovan G. (2011). Small Heat Shock Proteins and Doxorubicin-Induced Oxidative Stress in the Heart. Stud. Exp. Models. 2011, 105-130.
Lee G.J. and Vierling E. (2000). A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122(1), 189-198.
Leifer D., Krainc D., Yu Y.T., McDermott J., Breitbart R.E., Heng J., Leifer D., Krainc D., Yu Y.T., McDermott J., Breitbart R.E., Heng J., Neve R.L., Kosofsky B., Nadal-Ginard B. and Lipton S.A. (1993). MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc. Natl. Acad. Sci. USA. 90(4), 1546-1550.
Li L., Xiong T., Li T. and Chong W. (2011a). Construction of recombinant prokaryotic vector containing CRYAB genes of swine and the optimization expression. Guangdong Agric. Sci. 16, 51-60.
Li Y., Zeng Y., Mooney S.M., Yin B., Mizokami A., Namiki M. and Getzenberg R.H. (2011b). Resistance to paclitaxel increases the sensitivity to other microenvironmental stresses in prostate cancer cells. J. Cell. Biochem. 112(8), 2125-2137.
Liu J., Zhao H., Wang Y., Shao Y., Zong H., Zeng X. and Xing M. (2019). Arsenic trioxide and/or copper sulfate induced apoptosis and autophagy associated with oxidative stress and perturbation of mitochondrial dynamics in the thymus of Gallus gallus. Chemosphere. 219, 227-235.
Lu M., Lu Q., Zhang Y. and Tian G. (2011). ApoB/apoA1 is an effective predictor of coronary heart disease risk in overweight and obesity. J. Biomed. Res. 25(4), 266-273.
Lu Z., He X., Ma B., Zhang L., Li J., Jiang Y., Zhou G.H. and Gao F. (2019). Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult. Sci. J. 98(9), 3695-3704.
Luo Q., Song X., Ji C., Zhang X. and Zhang D. (2014). Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene. 546(2), 200-205.
Matsson H., Eason J., Bookwalter C.S., Klar J., Gustavsson P., Sunnegårdh J., Enell H., Jonzon A., Vikkula M., Gutierrez I., Granados-Riveron J., Pope M., Bu'Lock F., Cox J., Robinson T.E., Song F., Brook D.J., Marston S., Trybus K.M. and Dahl N. (2008). Alpha-cardiac actin mutations produce atrial septal defects. Hum. Mol. Genet. 17(2), 256-265.
Mazzi C.M., Ferro J.A., Ferro M.I.T., Savino V.J.M., Coelho A.A.D. and Macari M. (2003). Polymorphism analysis of the HSP70 stress gene in broiler chickens (Gallus gallus) of different breeds. Genet. Mol. Biol. 26(3), 275-281.
McNally E. and Dellefave L. (2009). Sarcomere mutations in cardiogenesis and ventricular noncompaction. Trends Cardiovasc. Med. 19(1), 17-21.
Mihara M., Erster S., Zaika A., Petrenko O., Chittenden T., Pancoska P. and Moll U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol. Cell. 11(3), 577-590.
Molkentin J.D., Black B.L., Martin J.F. and Olson E.N. (1996). Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol. Cell. Biol. 16(6), 2627-2636.
Nam J., Lee D.G., Kwon J., Choi C.W., Park S.H., Kwon S.O., Chi C., Seong Hwa P., Sang-Oh K., Jong J., Hwa P., Beom P., Ik-Soon J., Woo Young B., Chul K. and Jong-Soon C. (2012). Comparative proteome analysis of porcine longissimusdorsi on the basis of pH24 of post-mortem muscle. J. Agric. Sci. 4(9), 48-55.
Nebreda A.R. and Porras A. (2000). p38 MAP kinases: Beyond the stress response. Trends Biochem. Sci. 25(6), 257-260.
Nidamanuri A.L., Murugesan S. and Mahapatra R.K. (2017). Effect of heat stress on physiological parameters upon supplementation of fermented yeast culture to Nicobari chickens during and post summer. J. Anim. Physiol. Anim. Nutr. 106(2), 284-295.
Ohba K., Sasaki S., Matsushita A., Iwaki H., Matsunaga H., Suzuki Ishizuka K., Misawa H., Oki Y. and Nakamura H. (2011). GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin β gene. PLoS One. 6, e18667.
Patwari P., Emilsson V., Schadt E.E., Chutkow W.A., Lee S., Marsili A., Zhang Y., Dobrin R., Cohen D.E., Larsen P.R., Zavacki A.M., Fong L.G., Young S.G. and Lee R.T. (2011). The arrestin domain-containing 3 protein regulates body mass and energy expenditure. Cell Metab. 14(5), 671-683.
Paulat N.S. (2016). Developing curated resources for rasopathies research. MS Thesis. University of Arizona, Arizona, USA.
Pearson G., Robinson F., Beers Gibson T., Xu B.E., Karandikar M., Berman K. and Cobb M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22(2), 153-183.
Pepin K., Momose F., Ishida N. and NAagata K. (2001). Molecular cloning of horse HSP90 cDNA and its comparative analysis with other vertebrate HSP90 sequences. J. Vet. Med. Sci. 63(2), 115-124.
Perini F., Cendron F., Rovelli G., Castellini C., Cassandro M. and Lasagna E. (2020). Emerging genetic tools to investigate molecular pathways related to heat stress in chickens: A review. Animals. 11(45), 2-19.
Piray A. and Foroutanifar S. (2021). Chromium supplementation on the growth performance, carcass traits, blood constituents, and immune competence of broiler chickens under heat stress: A systematic review and dose–response meta-analysis. Biol. Trace Elem. Res. 200(6), 2876-2888.
Qin S., Minami Y., Kurosaki T. and Yamamura H. (1997). Distinctive functions of Syk and Lyn in mediating osmotic stress-and ultraviolet C irradiation-induced apoptosis in chicken B cells. J. Biol. Chem. 272(29), 17994-17999.
Rage F., Lazaro J.B., Benyassi A., Arancibia S. and TapiaArancibia L. (1994). Rapid changes in somatostatin and TRH mRNA in whole rat hypothalamus in response to acute cold exposure. J. Neuroendocrinol. 6(1), 19-23.
Rampoldi L., Dobson-Stone C., Rubio J.P., Danek A., Chalmers R.M., Wood N.W., Verellen C., Ferrer X., Malandrini A., Fabrizi G.M., Brown R., Vance J., Pericak-Vance M., Rudolf G., Carrè S., Alonso E., Manfredi M., Németh A.H. and Monaco M. (2001). A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat. Genet. 28(2), 119-120.
Rogalla T., Ehrnsperger M., Preville X., Kotlyarov A., Lutsch G., Ducasse C., Paul C., Wieske M., Arrigo A.P., Buchner J., Gaestel M. and Buchner J. (1999). Regulation of HSP27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor α by phosphorylation. J. Biol. Chem. 274(27), 18947-18956.
Schmidt E.M., Schmid E., Münzer P., Hermann A., Eyrich A.K., Russo A., Walker-Allgaier B., Shuchen G.U., Jennifer J., Caterina F., Martin S., Michael F., Ludger S., Meinrad G., Oliver B., Alexander S., Christos S. and Florian L. (2013). Chorein sensitivity of cytoskeletal organization and degranulation of platelets. FASEB J. 27(7), 2799-2806.
Segrest J.P., Jones M.K. and Dashti N. (1999). N-terminal domain of apolipoprotein B has structural homology to lipovitellin and microsomal triglyceride transfer protein: A “lipid pocket” model for self-assembly of apoB-containing lipoprotein particles. J. Lipid Res. 40(8), 1401-1416.
Sen Banerjee S., Lin Z., Atkins G.B., Greif D.M., Rao R.M., Kumar A., Feinberg M.W., Chen Z., Simon D.I., Luscinskas F.W., Michel T.M., Gimbrone M.A.,García-Cardeñ G. and Jain M.K. (2004). KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199(10), 1305-1315.
Sohn S.H., Cho E.J., Park J., Hong Y.H. and Kim C.D. (2015). Analysis of stress response of domestic chicken breeds for the development of a new synthetic parent stock. Korean J. Poult. Sci. 42(2), 157-167.
Soleimani A.F., Zulkifli I., Omar A.R. and Raha A.R. (2011). Physiological responses of 3 chicken breeds to acute heat stress. J. Poult. Sci. 90(7), 1435-1440.
Steele A.D., Hutter G., Jackson W.S., Heppner F.L., Borkowski A.W., King O.D., Raymond G.J., Aguzzi A., Lindquist S. and Lindquist S. (2008). Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease. Proc. Natl. Acad. Sci. USA. 105(36), 13626-13631.
Sun H., Jiang R., Xu S., Zhang Z., Xu G., Zheng J. and Qu L. (2015). Transcriptome responses to heat stress in hypothalamus of a meat-type chicken. J. Anim. Sci. Biotechnol. 6(1), 1-12.
Takeda E., Terao J., Nakaya Y., Miyamoto K.I., Baba Y., Chuman H., Kaji R., Ohmori T. and Rokutan K. (2004). Stress control and human nutrition. J. Med. Invest. 51(3), 139-145.
Tang S., Yin B., Song E., Chen H., Cheng Y., Zhang X., Bao E. and Hartung J. (2016). Aspirin upregulates αB-Crystallin to protect the myocardium against heat stress in broiler chickens. Sci. Rep. 6, 37273-37279.
Uckun F.M. and Qazi S. (2014). SYK as a new therapeutic target in B-cell precursor acute lymphoblastic leukemia. J. Cancer Ther. 5(1), 124-131.
Virden W.S. and Kidd M.T. (2009). Physiological stress in broilers: Ramifications on nutrient digestibility and responses. Appl. Poult. Res. 18(2), 338-347.
Waldenstedt L. (2006). Nutritional factors of importance for optimal leg health in broilers: A Review. Anim. Feed Sci. Technol. 126(3), 291-307.
Wang S. and Edens F. (1994). HSP70 mRNA expression in heat-stressed chickens. Comp. Biochem. Physiol. 107(1), 33-37.
Wang S.H., Cheng C.Y., Tang P.C., Chen C.F., Chen H.H., Lee Y.P. and Huang S.Y. (2013). Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology. 79(2), 374-382.
Weber A., Wasiliew P. and Kracht M. (2010). Interleukin-1 (IL-1) pathway. Sci. Signal. 3(105), 1-6.
Wieske M., Benndorf R., Behlke J., Dölling R., Grelle G., Bielka H. and Lutsch G. (2001). Defined sequence segments of the small heat shock proteins HSP25 and αB crystallin inhibit actin polymerization. Eurpean J. Biochem. 268(7), 2083-2090.
Wigley P. and Kaiser P. (2003). Avian cytokines in health and disease. Brazilian J. Poult. Sci. 5(1), 1-14.
Wu T., Zhang Z., Yuan Z., Lo L.J., Chen J., Wang Y. and Peng J. (2013). Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimusdorsi muscles in Jinhua and landrace pigs. PLoS One. 8(1), e53181.
Xu J., Yin B., Huang B., Tang S., Zhang X., Sun J. and Bao E. (2019a). Co-enzyme Q10 protects chicken hearts from in vivo heat stress via inducing HSF1 binding activity and HSP70 expression. Poult. Sci. 98(2), 1002-1011.
Xu Y.J., Hu M.L., Zhou L.H., Qi W., Zhang X.Q. and Luo Q.B. (2019b). Effect of HSPB9 on apoptosis of DF-1 cells. Biomed. Environ. Sci. 32(2), 107-120.
Yasuhara K., Ohno Y., Kojima A., Uehara K., Beppu M., Sugiura Y., Ohno A., Kojima K., Uehara M., Beppu T., Sugiura M., Fujimoto A., Nakai Y., Ohira T., Yoshioka Goto K. and Yoshioka T. (2011). Absence of heat shock transcription factor 1 retards the growth of atrophied soleus muscle in mice. J. Appl. Physiol. 111(4), 1142-1149.
Zhang J., Liu J., Wu J., Li W., Chen Z. and Yang L. (2019). Progression of the role of CRYAB in signaling pathways and cancers. Onco Targets Ther. 12, 4129-4139.
Zhang S., Shi H. and Li H. (2007). Cloning and tissue expression characterization of the chicken APOB gene. Anim. Biotechnol. 18(4), 243-250.
Zhang W., Kong L., Zhang X. and Luo Q. (2014). Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress. Genet. Mol. Res. 13(4), 9777-9794.
Zhao P., Guo Y., Zhang W., Chai H., Xing H. and Xing M. (2017). Neurotoxicity induced by arsenic in Gallus gallus: regulation of oxidative stress and heat shock protein response. Chemosphere. 166, 238-245.
Zhen F.S., Du H.L., Xu H.P., Luo Q.B. and Zhang X.Q. (2006). Tissue and allelic-specific expression of HSP70 gene in chickens: Basal and heat-stress-induced mRNA level quantified with real-time reverse transcriptase polymerase chain reaction. British Poult. Sci. 47(4), 449-455.