Effects of Chitosan and Whole Raw Soybeans on Feeding Behavior and Heat Losses of Jersey Heifers
Subject Areas : Camelاچ.م.سی. هراکی 1 , ج.ر. گاندرا 2 , ای.ر. اُلیویرا 3 , سی.اس. تاکیا 4 , ر.اچ.ت.ب. گواِس 5 , آ.م.آ. گابریل 6 , جی.سی.جی. رُدرگیوس 7 , ای.ر.اس. گاندرا 8 , ت.ل. پریرا 9 , جِی. دامیانی 10 , جِی.د.اُ. باتیستا 11
1 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
2 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
3 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
4 - Department of Animal Science and Industry, Kansas State University, 66506, Manhattan, USA
5 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
6 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
7 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
8 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
9 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
10 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
11 - Department of Animal Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, MS, Brazil
Keywords: Chitin, heat production, infrared imaging, oilseed, Thermography,
Abstract :
This study aimed to determine the effects of chitosan, whole raw soybeans or their interaction on feeding behavior and heat losses through thermography assay of Jersey heifers fed high concentrate diets. Twelve Jersey heifers (age of 6±0.5 months and 139.50±25.56 kg of live weight, mean±SD) were randomly assigned to a replicated latin square design with 2 × 2 factorial treatment arrangement. The experimental period consisted of 14 days of adaptation to the diets, 6 days of sampling and 5 days of wash out. The diets were: control (CO), chitosan (CHI, inclusion of 20 g/kg dry matter (DM) of chitosan), whole raw soybeans (WS, 163.0 g/kg of WS on diet DM basis), and chitosan + whole raw soybeans (CHI+WS). Chitosan decreased DM and neutral detergent fiber (NDF) intake (0.79 and 0.31 kg/d, respectively), increased the eating time (31.88 min) and decreased the NDF content of regurgitate rumen bolus (57 g). Whole raw soybeans did not affect feeding behavior, except for a higher time in standing rest. The association of CHI and WS increased the time which animal ruminated stand. The diets did not influence superficial temperature of heifers. However, WS diet increased heat losses by radiation and convection. The highest values of heat losses were observed after 2 hours of feeding. The interaction of CHI and WS did not alter feeding behavior and heat losses. Feeding WS to heifers increased the total heat losses.
Allen M.S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83, 1598-1624.
Allen M.S., Bradford B.J. and Oba M. (2009). The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 87, 3317-3334.
Araújo A.P.A., Venturelli B.C., Santos M.C.B., Gardinal R., Cônsolo N.R.B., Calomeni G.D., Freitas J.E., Barletta R.V., Gandra J.R., Paiva P.G. and Rennó F.P. (2015). Shor communication: Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim. Feed Sci. Technol. 206, 114-118.
Barletta R.V., Gandra J.R., Freitas Junior J.E., Verdurico L.C., Mingoti R.D., Bettero V.P., Benevento B.C., Vilela F.G. and Rennó F.P. (2016). High levels of whole raw soya beans in dairy cow diets: digestibility and animal performance. J. Anim. Physiol. Anim. Nutr. 100, 1179-1190.
Berman A. (2003). Effects of body surface area estimates on predicted energy requirements and heat stress. J. Dairy Sci. 86, 3605-3610.
Bürger P.J., Pereira J.C., Queiroz A.C., Coelho S.J.F., Valadares Filho S.C., Cecon P.R. and Casali A.D.P. (2000). Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado. Rev. Bras. Zootec. 29, 236-242.
Costa L.T., Silva F.F., Pires A.J.V., Bonomo P., Rodrigues E.S.O., Souza D.D., Mateus R., Silva R.R. and Schio A.R. (2014). Ingestive behavior of lactating cows fed sugarcane and crude glycerin levels on the diet. Semina: Ciênc. Agrár. 35, 2597-2604.
DeVries T.J. and Von Keyserlingk M.A.G. (2009). Short communication: Feeding method affects the feeding behavior of growing dairy heifers. J. Dairy Sci. 92, 1161-1168.
Drackley J.K., Cicela T.M. and La Count D.W. (2003). Responses of primiparous and multiparous Holstein cows to additional energy from fat or concentrate during summer. J. Dairy Sci. 86, 1306-1314.
Dulphy J.P., Remond B. and Theriez M. (1980). Ingestive behaviour and related activities in ruminants. Pp. 103-122 in Digestive Physiology and Metabolism. Y. Ruckebush and P. Thivend, Eds. MTP Press Ltd., Lancaster, United Kingdom.
Gandra J.R., Takiya C.S., Oliveira E.R., Paiva P.G., Goes R.H.T.B., Gandra E.R.S. and Araki H.M.C. (2016). Nutrient digestion, microbial protein synthesis, and blood metabolites of Jersey heifers fed chitosan and whole raw soybeans. Rev. Bras. Zootec. 43, 130-137.
Goiri I., Oregui L.M. and Garcia-Rodriguez A. (2010). Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. J. Anim. Sci. 88, 749-755.
Gomes R.A., Busato K.C., Ladeira M.M., Johnson K.A., Galvão M.C., Rodrigues A.C., Lourençoni D. and Chizzotti M.L. (2016). Technical note: Relationship between infrared thermography and heat production in young bulls. J. Anim. Sci. 94(3), 1105-1109.
Greter A.M., Leslie K.E., Mason B.W., McBride G.J. and De Vries T.J. (2010). Effect of feed delivery method on the behavior and growth of dairy heifers. J. Dairy Sci. 93, 1668-1676.
Holter J.B., Hayes H.H., Urban Jr W.E. and Duthie A.H. (1992). Energy balance and lactation response in Holstein cows supplemented with cottonseed with or without calcium soap. J. Dairy Sci. 75, 1480-1494.
Huzzey J.M., Fregonesi J.A., von Keyserlingk M.A. and Weary D.M. (2013). Sampling behavior of dairy cattle: Effects of variation in dietary energy density on behavior at the feed bunk. J. Dairy Sci. 96, 247-256.
Kotrba R., Knížková I., Kunc P. and Bartoš L. (2007). Comparison between the coat temperature of the eland and dairy cattle by infrared thermography. J. Therm. Biol. 32, 355-359.
Martello L.S., Savastano Jr H., Silva S.L. and Balieiro J.C.C. (2009). Alternative body sites for heat stress measurement in milking cows under tropical conditions and their relationship to thermal discomfort of animals. Int. J. Biometeorol. 54, 647-652.
Montanholi Y.R., Odongo N.E., Swanson K.C., Schenkel F.S., McBride B.W. and Miller S.P. (2008). Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). J. Therm. Biol. 33, 468-475.
Morrison S.R. (1983). Ruminant heat stress: Effect on production and means of alleviation. J. Anim. Sci. 57, 1594-1600.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC, USA.
Oliveira A.S. and Ferreira V.B. (2016). Prediction of intake in growing dairy heifers under tropical conditions. J. Dairy Sci. 99, 1103-1110.
Paiva P.G., Jesus E.F., Valle T.A., Almeida G.F., Costa A.G.B.V.B., Consentini C.E.C., Zanferari F., Takiya C.S., Bueno I.C.S. and Rennó F.P. (2016). Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim. Prod. Sci. 57(2), 301-307.
SAS Institute. (2004). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Scharf B., Carrol J.A., Riley D.G., Chase C.C., Coleman S.W., Keisler D.H., Weaber R.L. and Spiers D.E. (2010). Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos taurus cattle during controlled heat challenge. J. Anim. Sci. 88, 2321-2336.
Senel S. and Mcclure S.J. (2004). Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev. 56, 1467-1480.
Silva R.R., Silva F.F., Carvalho G.G.P., Franco I.L., Veloso C.M., Chaves M.A., Bonomo P., Prado I.N. and Almeida V.S. (2005). Comportamento ingestivo de novilhas mestiças de holandês × zebu confinadas. Arch. Zootec. 54, 75-85.
Van Brecht A., Hens H., Lemaire J.L., Aerts J.M., Degraeve P. and Berckmans D. (2005). Quantification of the heat exchange of chicken eggs. Poult. Sci. 84, 353-361.
West J.W. (2003). Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86, 2131-2144.
Yahav S., Straschnow A., Luger D., Shinder D., Tanny J. and Cohen S. (2004). Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poult. Sci. 83, 253-258.