Effect of the Probiotic Bifidobacterium animalis as a Substitute to Growth-Promoting Antibiotics on Performance and Egg Quality in Laying Hens
Subject Areas : CamelC.D. Balcón-Pacheco 1 , F.D. Coronel-Gómez 2 , C. Ozuna 3 , M. Jiménez-Fernández 4 , C.A. Angel-Sahagún 5 , E. Franco-Robles 6 *
1 - Department of Veterinary and Animal Science, Irapuato‐Salamanca Campus, University of Guanajuato, Guanajuato, Mexico
2 - Department of Veterinary and Animal Science, Irapuato‐Salamanca Campus, University of Guanajuato, Guanajuato, Mexico
3 - Department of Food Engineering, Irapuato‐Salamanca Campus, University of Guanajuato, Guanajuato, Mexico
4 - Food Research and Development Center, Veracruz University, Xalapa, Veracruz, México
5 - Department of Veterinary and Animal Science, Irapuato‐Salamanca Campus, University of Guanajuato, Guanajuato, Mexico
6 - Department of Veterinary and Animal Science, Irapuato‐Salamanca Campus, University of Guanajuato, Guanajuato, Mexico
Keywords: probiotics, laying hens, egg quality, dietary additives,
Abstract :
The present study was conducted to determine the effects of a dietary probiotic (Bifidobacterium animalis ssp.) as a substitute to a mixture of growth-promoting antibiotics (zinc bacitracin and colistin sulfate on the laying performance, egg quality characteristics, blood parameters, and organ morphological characteristics of early-phase laying hens. Seventy-two (72) 20-week-old Lohmann White hens were randomized into three treatment groups. The dietary treatments are as follows: Growth-promoting antibiotics (GPA; 0.5 % of COLI-ZIN), probiotic (PRO; 0.1% Bifidobacterium animalis ssp. lactis) or without any additive (control; CON) for 90-days feeding trial. Significant differences were observed in feed intake and feed conversion ratio of the bird’s fed PRO compared to GPA and CON at 90 days of the experimental period. The air cell height, yolk volume, and yellowness of yolk color were lower, and thick and thin albumen diameters were the greatest in the PRO group than in CON and GPA groups (P<0.05). Dietary PRO decreased the number of heterophils (H) and increased the number of lymphocytes (L), improving the H:L index (P<0.05). Probiotic treatment increased crop and duodenum relative weight compared to GPA (P<0.05). No significant changes (P>0.05) were observed in the relative weight of reproductive organs. This study shows that the dietary supplementation of 0.1% Bifidobacterium animalis improves laying performance and egg traits and can be a substitute for antibiotics in hen diets.
Abanikannda O.T.F., Olutogun O., Leigh A.O. and Ajayi L.A. (2007). Statistical modeling of egg weight and egg dimensions in commercial layers. Int. J. Poult. 6, 59-63.
Abdelqader A., Al-Fataftah A.R. and Daş G. (2013). Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim. Feed Sci. Technol. 179, 103-111.
Acevedo L.M.R., Blas S.S.M. and Fuentes-Mascorro G. (2012). Hemograma y características morfológicas de las células sanguíneas de tortuga golfina (Lepidochelys olivacea) de Oaxaca, México. Sci. J. 5, 468-476.
Alagawany M., El-Hack A., Mohamed E., Farag M.R., Sachan S., Karthik K. and Dhama K. (2018). The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ. Sci. Pollut. Res. 25, 10611-10618.
Awad W.A., Ghareeb K., Abdel-Raheem S. and Böhm J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88, 49-56.
Danzeisen J.L., Kim H.B., Isaacson R.E., Tu Z.J. and Johnson T.J. (2011). Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One. 6, e27949.
Forte C., Moscati L., Acuti G., Mugnai C., Franciosini M.P., Costarelli S. and Trabalza-Marinucci M. (2016). Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens. J. Anim. Physiol. Anim. Nutr. 100, 977-987.
Gross W.B. and Siegel H.S. (1983). Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian. Dis. 27, 972-979.
Hajiaghapour M. and Rezaeipour V. (2018). Comparison of two herbal essential oils, probiotic, and mannan-oligosaccharides on egg production, hatchability, serum metabolites, intestinal morphology, and microbiota activity of quail breeders. Livest. Sci. 210, 93-98.
Hanusova E., Hrnčár C., Hanus A. and Oravcová M. (2015). Effect of breed on some parameters of egg quality in laying hens. Acta Fytotech. 18, 20-24.
Hassanein S.M. and Soliman N.K. (2010). Effect of probiotic (Saccharomyces cerevisiae) adding to diets on intestinal microflora and performance of Hy-Line layers hens. J. Am. Sci. 6, 159-169.
Jha R., Das R., Oak S. and Mishra P. (2020). Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals. 10, 1-9.
Kogut M.H. (2009). Impact of nutrition on the innate immune response to infection in poultry. J. Appl. Poult. Res. 18, 111-124.
Lan R.X., Lee S.I. and Kim I.H. (2016). Effects of multistrain probiotics on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and noxious gas emission in weaning pigs. J. Anim. Physiol. Anim. Nutr. 100, 1130-1138.
Lohmann T. (2020). Lohmann LSL Classic Management Guide. Lohmann Tierzucht GmbH, Germany.
Lutful Kabir S.M. (2009). The role of probiotics in the poultry industry. Int. J. Mol. Sci. 10, 3531-3546.
McNamee S.E., Cunningham R. and Elliott C.T. (2013). Simultaneous immunochemical detection of four banned antibiotic growth promoters in raw and cooked poultry tissue. Food Addit. Contam. 30, 1270-1278.
Mikulski D., Jankowski J., Naczmanski J., Mikulska M. and Demey V. (2012). Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poult. Sci. 91, 2691-2700.
Moazeni S.M., Mohammadabadi M.R., Sadeghi M., Moradi shahrbabak H., Esmailizadeh A. and Bordbar F. (2016a) Association between UCP gene polymorphisms and growth, brreeding value of growth and reproductive traits in Mazandaran indigenous chicken. Open J. Anim. Sci. 6, 1-8.
Moazeni S.M., Mohammadabadi M.R., Sadeghi M., Moradi shahrbabak H., Esmailizadeh A. and Bordbar F. (2016b) Association of the melanocortin-3(MC3R) receptor gene with growth and reproductive traits in Mazandaran indigenous chicken. J. Livest. Sci. Technol. 4, 51-56.
Mohammadabadi M.R., Nikbakhti M., Mirzaee H.R., Shandi A., Saghi D.A., Romanov M.N. and Moiseyeva I.G. (2010). Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian J. Genet. 46(4), 505-509.
Mohammadifar A., Faghih Imani S.A., Mohammadabadi M.R. and Soflaei M. (2014). The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agric. Biotechnol. J. 5, 125-136.
Mohammadifar A. and Mohammadabadi M.R. (2018). Melanocortin-3 receptor (mc3r) gene association with growth and egg production traits in Fars indigenous chicken. Malaysian Appl. Biol. 47, 85-90.
Mohammadifar A. and Mohammadabadi M.R. )2017(. The effect of uncoupling protein polymorphisms on growth, breeding value of growth and reproductive traits in the fars indigenous chicken. Iranian J. Appl. Anim. Sci. 7, 679-685.
Muhammad J., Khan S., Su J.Q., Hesham A.E.L., Ditta A., Nawab J. and Ali A. (2020). Antibiotics in poultry manure and their associated health issues: a systematic review. J. Soils Sedim. 20, 486-497.
Mund M.D., Khan U.H., Tahir U., Mustafa B. E., and Fayyaz, A. (2017). Antimicrobial drug residues in poultry products and implications on public health: A review. Int. J. Food Prop. 20, 1433-1446.
Narushin V.G., Romanov M.N. and Griffin D.K. (2021). A novel egg quality index as an alternative to Haugh unit score. J. Food Eng. 289, 1-12.
Natt M.P. and Herrick C.A. (1952). A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult. Sci. 31, 735-738.
NOM-033–ZOO. (1995). Norma Oficial Mexicana. Sacrificio Humanitario de los Animales Domésticos y Silvestres, Mexico.
Özek K., Wellmann K.T., Ertekin B. and Tarım B. (2011). Effects of dietary herbal essential oil mixture and organic acid preparation on laying traits, gastrointestinal tract characteristics, blood parameters and immune response of laying hens in a hot summer season. J. Anim. Feed Sci. 20, 575-586.
Peng Q., Zeng X.F., Zhu J.L., Wang S., Liu X.T., Hou C.L., Thacker P.A. and Qiao S.Y. (2016). Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens. Poult. Sci. 95, 893-900.
Ricke S.C. (2015). Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poult. Sci. 94, 1411-1418.
Ricke S.C., Lee S.I., Kim S.A., Park S.H. and Shi Z. (2020). Prebiotics and the poultry gastrointestinal tract microbiome. Poult. Sci. 99, 670-677.
Sauveur B. (1988). Reproduction des Volailles et Production D'oeufs. Institut National de la Recherche Agronomique, Paris, France.
Shahdadnejad N., Mohammadabadi M.R. and Shamsadini M. (2016). Typing of Clostridium Perfringens Isolated from Broiler Chickens Using Multiplex PCR. Genet. Third Millenn. 14(4), 4368-4374.
Shini S., Shini A. and Blackall P.J. (2013). The potential for probiotics to prevent reproductive tract lesions in free-range laying hens. Anim. Prod. Sci. 53, 1298-1308.
Song J., Xiao K., Ke Y.L., Jiao L.F., Hu C.H., Diao Q.Y., Shi B. and Zou X.T. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult. Sci. 93, 581-588.
Suresh G., Das R.K., Kaur Brar S., Rouissi T., Avalos Ramirez A., Chorfi Y. and Godbout S. (2018). Alternatives to antibiotics in poultry feed: molecular perspectives. Crit. Rev. Microbiol. 44, 318-335.
Tang S.G.H., Sieo C.C., Ramasamy K., Saad W.Z., Wong H.K. and Ho Y.W. (2017). Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic. BMC Vet. Res. 13, 1-12.
Tapingkae W., Panyachai K., Yachai M. and Doan H.V. (2018). Effects of dietary red yeast (Sporidiobolus pararoseus) on production performance and egg quality of laying hens. J. Anim. Physiol. Anim. Nutr. 102, 337-344.
Vieco-Saiz N., Belguesmia Y., Raspoet R., Auclair E., Gancel F., Kempf I. and Drider D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 57-65.
Yan F.F., Murugesan G.R. and Cheng H.W. (2019). Effects of probiotic supplementation on performance traits, bone mineralization, cecal microbial composition, cytokines and corticosterone in laying hens. Animal. 13, 33-41.