Liquid Metabolite of Lactobacillus plantarum and Putrescine Effects on Growth, Tissue Polyamine, Blood Lipids and Intestine Morphology of Broiler Chickens
Subject Areas : Camelس.م. هاشمی 1 * , تی.سی. لوه 2 , اچ.ال. فوو 3
1 - Department of Animal Science, Qom Agriculture and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Qom, Iran
2 - Department of Animal Science, University of Putra Malaysia, Malaysia
3 - Department of Bioprocess Technology, University of Putra Malaysia, Malaysia
Keywords: intestinal morphology, blood lipids, luminal polyamines, microbial metabolite, putre-scine,
Abstract :
This experiment aimed to investigate the effects of liquid metabolite (LM) produced by Lactobacillus plantarum and dietary putrescine (PUT) on growth, blood lipids, villus height (VH), crypt depth (CD) and polyamines (PAs) content of intestinal tissue and ileal digesta in chickens. Six treatments, replicated six time each, were factorial arrangements of two levels of LM (0 and 0.3%) and three levels of dietary putrescine (0, 0.03 and 0.05%). Growth performance and PAs content of digesta and excreta (at 21 d) were measured, as well as small intestine VH and CD. Blood cholesterol, triglyceride and glucose were measured at 24, 33 and 40th d. Putrescine (0.05%) negatively affected body weight, feed conversion ratio and protein and energy efficiency ratio while increased duodenal VH significantly (P<0.05) as compared to the 0.03% putrescine. Aging was effective on blood cholesterol, triglyceride and glucose. Blood triglyceride decreased by 0.03% putrescine (P<0.05). Faecal spermidine was increased significantly (P<0.05) by 0.05% putrescine. Duodenal PAs declined in the chickens fed LM, whereas dietary putrescine had no effects on intestinal tissue polyamine. In conclusion, luminal PAs content was not affected by treatments. LM influenced intestinal tissue PAs but had no effects on growth and ileal digesta polyamine content. However, putrescine (0.05%) was harmful to the growth but increased duodenal VH.
Bjeldanes L.F., Schutz D.E. and Morris M.M. (1978). On the aetiology of scombroid poisoning: Cadaverine potentiation of histamine toxicity in the guinea-pig. Food Cosmet. Toxicol. 16(2), 157-159.
Bradley G.L., Savage T.F. and Timm K.I. (1994). The effects of supplementing diets with Saccharomyces cerevisiae var. boulardii on male poult performance and ileal morphology. Poult. Sci. 73(11), 1766-1770.
Brugh M. and Wilson R.L. (1986). Effect of dietary histamine on broiler chickens infected with avian reovirus S1133. Avian Dis. 30, 199-203.
Buts J.P., De Keyser N. and De Raedemaeker L. (1994). Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr. Res. 36(4), 522-527.
Capcarova M., Weis J., Hrnčár C., Kolesarova A., Petruska P., Kalafová A. and Pál G. (2011). Effect of probiotic supplementation on selected indices of energy profile and antioxidant status of chicken. J. Microbiol. Biotechnol. Food Sci. 1(2), 225-235.
Choudhari A., Shinde S. and Ramteke B.N. (2008). Prebiotics and probiotics as health promoter. Vet. World. 1(2), 59-61.
Foo H.L., Lim Y.S., Loh T.C., Saleh N.M., Raha A.R. and Rusul G. (2005). Characterization of bacteriocin produced by Lactobacillus plantarum I-UL4 isolated from Malaysian fermented tapioca, Tapai Ubi. Pp. 33-35 in Proc. 4th NIZO Dairy Conf. Papendal, Netherland.
Foo H.L., Loh T.C., Lai P.W., Lim Y.Z., Kufli C.N. and Rusul G. (2003a). Effects of adding Lactobacillus plantarum I-UL4 metabolites in drinking water of rats. Pakistan J. Nutr. 2(5), 283-288.
Foo H.L., Loh T.C., Law F.L., Lim Y.S., Kufli C.N. and Rusul G. (2003b). Effects of feeding Lactobacillus plantarum I-UL4 isolated from Malaysian Tempeh on growth performance, faecal flora and lactic acid bacteria and plasma cholesterol concentrations in postweaning rats. Food Sci. Biotechnol. 12(4), 403-408.
Forget P., Sinaasappel M., Bouquet J., Deutz N.E.P. and Smeets C. (1997). Fecal polyamine concentration in children with and without nutrient malabsorption. J. Pediat. Gastroenterol. Nutr. 24(3), 285-288.
Grant A.L., Holland R.E., Thomas J.W., King K.J. and Liesman J.S. (1989). Effects of dietary amines on the small intestine in calves fed soybean protein. J. Nutr. 119(7), 1034-1041.
Grant A.L., Thomas J.W., King K.J. and Liesman J.S. (1990). Effects of dietary amines on small intestinal variables in neonatal pigs fed soy protein isolate. J. Anim. Sci. 68(2), 363-371.
Guirard B.M. and Snell E.E. (1964). Effect of polyamine structure on growth stimulation and spermine and spermidine content of lactic acid bacteria. J. Bacteriol. 88(1), 72-80.
Hashemi S.M. (2013). Growth performance and intestinal morphology of broilers fed low protein and low methionine diets supplemented with putrescine. Ph D. Thesis. Universiti Putra Malaysia, Malaysia.
Hashemi S., Loh T.C., Foo H.L., Zulkifli I. and Bejo M.H. (2014). Effects of putrescine supplementation on growth performance, blood lipids and immune response in broiler chickens fed methionine deficient diet. Anim. Feed Sci. Technol. 194, 151-156.
Hatakka K., Mutanen M., Holma R., Saxelin M. and Korpela R. (2008). Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS administered in capsules is ineffective in lowering serum lipids. J. American Coll. Nutr. 27(4), 441-447.
Hwang D.F., Chang S.H., Shiua C.Y. and Chai T.J. (1997). High-performance liquid chromatographic determination of biogenic amines in fish implicated in food poisoning. J. Chromatogr. B: Biomed. Sci. Appl. 693(1), 23-30.
Ignatova M., Sredkova V. and Marasheva V. (2009). Effect of dietary inclusion of probiotic on chickens performance and some blood indices. Biotechnol. Anim. Husband. 25(5), 1079-1085.
Jenkins A.P. and Thompson R.P. (1994). Enteral nutrition and the small intestine. Gut. 35(12), 1765-1769.
Johnson L.R. and McCormack S.A. (1999). Healing of gastrointestinal mucosa: Involvement of polyamines. Physiology. 14(1), 12-17.
Larque E., Sabater-Molina M. and Zamora S. (2007). Biological significance of dietary polyamines. Nutrition. 23(1), 87-95.
Linsalata M., Cavallini A., Messa C., Orlando A., Refolo M.G. and Russo F. (2010). Lactobacillus rhamnosus GG influences polyamine metabolism in HGC-27 gastric cancer cell line: a strategy toward nutritional approach to chemoprevention of gastric cancer. Curr. Pharm. Des. 16(7), 847-853.
Linsalata M., Russo F., Berloco P., Valentini A.M., Caruso M.L., DE Simone C., Barone M., Polimento L. and DI Leo A. (2005). Effects of probiotic bacteria (VSL# 3) on the polyamine biosynthesis and cell proliferation of normal colonic mucosa of rats. In vivo. 19(6), 989-995.
Loh T.C., Chong S.W., Foo H.L. and Law F.L. (2009). Effects on growth performance, faecal microflora and plasma cholesterol after supplementation of spray-dried metabolite to postweaning rats. Czech J. Anim. Sci. 54(1), 10-16.
Loh T.C., Thanh N.T., Foo H.L., Hair-Bejo M. and Kasim A. (2013). Effects of feeding metabolite combinations from lactobacillus plantarum on plasma and breast meat lipids in broiler chickens. Rev. Bras. Ciênc. AvÃc. 15(4), 307-316.
Loh T.C., Thanh N.T., Foo H.L., HairBejo M. and Azhar B.K. (2010). Feeding of different levels of metabolite combinations produced by Lactobacillus plantarum on growth performance, fecal microflora, volatile fatty acids and villi height in broilers. Anim. Sci. J. 81(2), 205-214.
Loser C., Eisel A., Harms D. and Folsch U.R. (1999). Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut. 44(1), 12-16.
Lyons D.E., Beery J.T., Lyons S.A. and Taylor S.L. (1983). Cadaverine and aminoguanidine potentiate the uptake of histamine in vitro in perfused intestinal segments of rats. Toxicol. Appl. Pharmacol. 70(3), 445-458.
Mendez J.D. and Hernandez R. (2005). L-arginine and polyamine administration protect B-cells againstalloxan diabetogenic effect in sprague -dawley rats. Biomed. Pharmacother. 59, 283-289.
Mutus R., Kocabagli N., Alp M., Acar N., Eren M. and Gezen S.S. (2006). The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult. Sci. 85(9), 1621-1625.
Noack J., Kleessen B., Lorenz A. and Blaut M. (1996). The effect of alimentary polyamine depletion on germ-free and conventional rats. J. Nutr. Biochem. 7(10), 560-566.
Osborne D.L. and Seidel E.R. (1990). Microflora-derived polyamines modulate obstructive-induced colonic mucosal hypertrophy. Am. J. Physiol. 285, 6576-6584.
Pegg A.E. (1986). Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234(2), 249-255.
Pegg A.E. and McCann P.P. (1982). Polyamine metabolism and function. American J. Physiol. Cell. Physiol. 243(5), 212-221.
Pirinen E., Gylling H., Itkonen P., Yaluri N., Heikkinen S., Pietilà M., Kuulasmaa T., Tusa M., Cerrada-Gimenez M. and Pihlajamäki J. (2010). Activated polyamine catabolism leads to low cholesterol levels by enhancing bile acid synthesis. Amino Acids. 38(2), 549-560.
Santos M.H. (1996). Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 29(2), 213-231.
SAS Institute. (1999). SAS®/STAT Software, Release 8. SAS Institute, Inc., Cary, NC. USA.
Simons L.A., Amansec S.G. and Conway P. (2006). Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr. Metabol. Cardiovasc. Dis. 16(8), 531-535.
Singh J., Rivenson A., Tomita M., Shimamura S., Ishibashi N. and Reddy B.S. (1997). Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 18(4), 833-841.
Stuart B.P., Cole R.J., Waller E.R. and Vesonder R.E. (1986). Proventricular hyperplasia (malabsorption syndrome) in broiler chickens. J. Environ. Pathol. Toxicol. Oncol: Offic. Org. Int. Soc. Environ. Toxicol. Cancer. 6(3), 369-385.
Tabor C.W. and Tabor H. (1985). Polyamines in microorganisms. Microbiol. Rev. 49(1), 81-99.
Takagi N., Tsuzuki K. and Fukuda M. (2010). Effect of soy yogurt (lactic acid-fermented okara in soymilk) on intestinal polyamine level in rats. Food Sci. Technol. Res. 16(5), 417-420.
Tersey S.A., Colvin S.C., Maier B. and Mirmira R.G. (2013). Protective effects of polyamine depletion in mouse models of type 1 diabetes: implications for therapy. Amino Acids. 46(3), 633-642.
Thanh N.T., Loh T.C., Foo H.L., Hair-Bejo M. and Azhar B.K. (2009). Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. British Poult. Sci. 50(3), 298-306.
Thu T.V., Loh T.C., Foo H.L., Yaakub H. and Bejo M.H. (2011a). Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in postweaning piglets. Trop. Anim. Health Prod. 43(1), 69-75.
Thu V., Foo H.L., Loh T.C. and Bejo M.H. (2011b). Inhibitory activity and organic acid concentrations of metabolite combinations produced by various strains of Lactobacillus plantarum. African J. Biotechnol. 10(8), 1359-1363.
Tovar D., Zambonino J., Cahu C., Gatesoupe F.J., Vasquez-Jurez, R. and Lesel R. (2002). Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture. 204(1), 113-123.