Co-Segregation of Quantitative Trait Loci (QTL) Affecting Pre-Weaning Traits for Fat-Tailed Ghezal Sheep in Chromosome 1
Subject Areas : CamelM. Bagheri 1 , A. Javanmard 2 * , S. Alijani 3 , J. Shoja 4
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Keywords: microsatellites, QTL mapping, Ghezal sheep, half sib,
Abstract :
This study exploited the co-segregation of quantitative trait loci (QTL) affecting pre-weaning traits in Ghezal sheep. Two half-sib families (n=71) were genotyped for 8 informative microsatellite markers covering chromosome 1. Data for production traits (birth weight (BW), weaning weight (WW), average dairy gains (ADG) and Kleiber ratio (KBR) were collected. Investigated microsatellite loci were successfully amplified in progenies and allele numbers per locus ranged from 2 (CSSM11) to 10 (MAF109). Two models used for estimation of QTL effect were across families and individual families. QTL mapping were conducted using online GridQTL. The results show that two the QTL retained significance (P≤0.01) for BW and KRB at the region of flanking markers CSSM019-CSSM032 and BM1312 respectively. Further studies will be useful using more families, animals and chromosome number for identification of co-segregation of QTL affecting pre-weaning traits in Ghezal sheep.
Alexander G. (1974). Birth Weight of Lambs: Influence and consequences. Pp. 215-245 in Size at Birth. K. Elliot and J. Knight, Eds. Elsevier, Amsterdam, the Netherlands.
Andersen C.L., Jensen J.L. and Orntoft T.F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245-5250.
Asadi-Khoshoei E., Horiat R., Houshmand S. and Esmailizadeh A. (2018). Mapping loci affecting live weight and body size in Lori-Bakhtiari sheep using paternal half-sib design and identification of biomarkers linked to growth rate. J. Agric. Biotechnol. 9, 1-15.
Baneh H. (2009). Estimation of genetic parameter for body weight in Ghezel breed sheep. MS Thesis. University of Mazandara, Sari, Iran.
Bichard D., Grohs C., Bourgeios F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y., Bocher M.Y. and Leveziel H. )2003(. Detection of genes influencing economic traits in three French dairy cattle breeds. Genet. Sel. Evol. 35, 77-101.
Boligon A.A., de Albuquerque L.G., Mercadante M.E.Z. and Lôbo R.B. (2009). Herdabilidades e correlações entre pesos do nascimento à idade adulta em rebanhos da raça Nelore. Rev. Bras. Zootec. 38, 2320-2326.
Churchill G.A. and Doerge R.W. (1994). Empirical threshold values for quantitative trait mapping. Genetics. 138, 963-971.
Esmailizadeh A.K. (2014). Genome-scan analysis for genetic mapping of quantitative trait loci underlying birth weight and onset of puberty in doe kids (Capra hircus). Anim. Genet. 45(6), 849-854.
Esmailizadeh K.A., Mohammad Abadi M.R. and Asadi Foozi M. (2008). Mapping quantitative trait loci in livestock using simple linear regression. Iranian J. Anim. Sci. 39, 83-93.
Fogarty N.M., Hall D.G. and Holst P.J. (1992). The effect of nutrition in mid pregnancy and ewe live weight change on birth weight and management for lamb survival in highly fecund ewes. Australian J. Exp. Agric. 32, 1-10.
Gardner D.S., Buttery P.J. and Daniel Z. (2007). Factors effecting birth weight in sheep. Reproduction. 133, 297-307.
Goring H.H.H., Terwilliger J.D. and Blangero J. (2001). Large upward bias in estimation of locus-specific effects from genomewide scans. Am. J. Hum. Genet. 69, 1357-1369.
Guidolin D.G.F., Buzanskas M.E., Ramos S.B., Venturini G.C. and Lobo R.B. (2012). Genotype-environment interaction for post-weaning traits in Nellore beef cattle. Anim. Prod. Sci. 52, 975-980.
Haley C.S. and Knott S.A. (1992). A simple regression method for mapping mapping quantitative trait loci in line cross using flanking markers. Heredity. 69, 315-375.
Hatcher S., Atkins K.D. and Safari E. (2009). Phenotypic aspects of lamb survival in Australian Merino sheep. J. Anim. Sci. 87, 2781-2790.
Knott S.A., Elsen J.M. and Haley C.S. (1996). Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93, 71-80.
Lander E.S. and Botstein D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 121, 185-199.
Lander E. and Kruglyak L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241-247.
Malau-Aduli A.E.O., Niibayashi T., Kojima T., Oshima K., Mizoguchi Y. and Komatsu M. (2005). Mapping the quantitative trait loci (QTL) for body shape and conformation measurements on BTA1 in Japanese Black cattle, Anim. Sci. J. 76, 19-27.
ØMaddox J.F. and Cockett N. (2007). An update on sheep and goat linkage maps and other genomic resources. Small Rumin. Res. 70, 4-20.
Raadsma H.W., Thomson P.C., Zenger K.R., Cavanagh C., Lam M.K., Jonas E., Jones M., Attard G., Palmer D. and Nicholas F.W. (2009). Mapping quantitative trait loci (QTL) in sheep. I. A new male framework linkage map and QTL for growth rate and body weight. Genet. Sel. Evol. 41, 34-42.
Safari E., Fogarty N. and Eilmour A. (2005). A review of genetic parameter estimation for wool, growth, meat and reproduction of sheep. Livest. Prod. Sci. 92, 271-289.
Samadi Shams S., Zununi Vahed S., Soltanzad F., Kafil V., Barzegari A., Atashpaz S. and Barar J. (2011). Highly effective DNA extraction method from fresh, frozen, dried and clotted blood samples. BioImpacts. 1(3), 183-187.
Soller M.A. and Genizi A. (1978). The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregation populations. Biometrics. 34, 47-55.
Song C.Y., Gao B., Teng S.H., Wang X.Y., Xie F., Chen G.H., Wang Z.Y., Jing R.B. and Mao J.D. (2007). Polymorphisms in intron 1 of the porcine POU1F1 gene. J. Appl. Genet. 48, 371-374.
Stone R.T., Keele J.W., Shacklford S.D., Kappes S.M. and Koohmaraie M. (1999). A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci. 77, 1379-1384.
Visser C.E., Van Marle-Köster M.A., Snyman H., Bovenhuis R.P.M.A. and Crooijmans H. (2013). Quantitative trait loci associated with pre-weaning growth in South African Angora goats. Small Rumin. Res. 112, 15-20.
Walling G.A., Visscher P.M., Wilson A.D., McTeir B.L., Simm G. and Bishop S.C. (2004). Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations1. J. Anim. Sci. 82, 2234-2245.
Woollard J., Tuggle C.K. and Ponce de leon F.A. (2000). Rapid communication: Localization of POU1F1 to bovin, ovine, and caprine 1 q21- 22. J. Anim. Sci. 78, 242-243.
Yu B.T.P., Wang L., Tuggle C.K. and Rothschild M.F. (1999). Mapping genes for fatness and growth on pig chromosome 13: A search in the region close to the pig pit-1 gene. J. Anim. Breed Genet. 116, 269-280.
Zhao Q., Davis M.E. and Hines H.C. (2004). Associations of polymorphisms in the pit- 1 gene with growth and carcass traits in Angus beef cattle. J. Anim. Sci. 82, 2229-2233.