The Association of Single Nucleotide Polymorphism (SNP) g.281G > A of CAST Gene with Meat Quality of Boerka Goat
Subject Areas : Camelا. آنتنیوس 1 , س.پ. گینتینگ 2 , س. الایزر 3 , ا. تاریگان 4 , س. سلهودین 5 , آی.گ.س. بودیساتریا 6 , آ.پ.ز.ن.ل. ساری 7 , د.ن.ه. هاریونو 8 , د. ماهارانی 9
1 - Indonesia Goat Research Center Sei Putih, Galang 20585, North Sumatera, Indonesia
2 - Indonesia Goat Research Center Sei Putih, Galang 20585, North Sumatera, Indonesia
3 - Indonesia Goat Research Center Sei Putih, Galang 20585, North Sumatera, Indonesia
4 - Indonesia Goat Research Center Sei Putih, Galang 20585, North Sumatera, Indonesia
5 - Indonesia Goat Research Center Sei Putih, Galang 20585, North Sumatera, Indonesia
6 - Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
7 - Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
8 - Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
9 - Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
Keywords: polymorphism, Calpastatin, Boerka goat,
Abstract :
Calpastatin gene has been known as a candidate gene for meat quality in cattle, sheep, and chicken. The purpose of this study was to identify CAST gene polymorphisms and its association with meat traits in Boerka goat. The data of pH, cooking loss (CL), warner-bratzler shear force (WBSF), water holding capacity (WHC), cholesterol, water, ash, fat, and protein contains were recorded. Sequencing of 21 samples revealed five polymorphisms of CAST gene in intron 12 within Boerka goat, namely g.146C > A, g.224A > G, g.281G > A, g.737C > T, and g.431G > A. Only single nucleotide polymorphism (SNP) g.281G > A was used for genotyping. The genotype and allele frequency based on g.281G > A showed 14.29% (GG genotype) and 85.71% (GA genotype) followed with 57% G allele and 43% A allele. The chi-square test showed deviation from HWE (p <0.05) in Boerka goat. The SNP g.281G > A revealed having significantly effect to CL. The GA animals had lower CL percentage compared to the GG animals. In conclusion, the SNP selected may be used for identify meat having low CL in Boerka goat.
Abuelfatah K., Zuki A.B.Z., Goh Y.M. and Sazili A.Q. (2016). Effects of enriching goat meat with n–3 polyunsaturated fatty acids on meat quality and stability. Small Rumin. Res. 136, 36-42.
Ardicli S., Hale S., Deniz D., Bahadir S. and Faruk B. (2017). Individual and combined effects of CAPN1, CAST, LEP and GHR gene polymorphisms on carcass characteristics and meat quality in Holstein bulls. Arch. Anim. Breed. 60, 303-313.
Asadi N. and Khederzadeh S. (2015). Polymorphism of candidate genes for meat quality in sheep. Middle East J. Sci. Res. 23, 2001-2004.
Bahrampour V. and Mohammadi A. (2017). Calpastatin gene polymorphism in Raini and Tali goat in the Kerman province. Iranian J. Appl. Anim. Sci. 7, 461-464.
Basinger K.L., Shanks B.C., Apple J.K., Caldwell J.D., Yancey J.W.S., Backes E.A., Wilbers L.S., Johnson T.M. and Bax A.L. (2019). Application of tension to prerigor goat carcasses to improve cooked meat tenderness. Meat Sci. 147, 1-5.
Brand T.S., Merwe D.A.V.D., Hoffman L.C. and Geldenhuys G. (2018). The effect of dietary energy content on quality characteristics of Boer goat meat. Meat Sci. 139, 74-81.
Ciobanu D.C., Bastiaansen J.W.M., Lonergan S.M., Thomsen H., Dekkers J.C.M., Plastow G.S. and Rothschild M.F. (2004). New alleles in calpastatin gene are accociated with meat quality traits in pigs. J. Anim. Sci. 82, 2829-2839.
Corva P., Liliana S., Alejandro S., Edgardo V., Macarena P.C., Mariana M., Carlos M., Lilia M., Cristina M., Enrique P., Gustavo D., Francisco S. and Juan G.N. (2007). Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Genet. Mol. Biol. 30, 1064-1069.
Duenk P., Calus M.P.L., Wientjes Y.C.J. and Bijma P. (2017). Benefits of dominance over additive models for the estimation of average effects in the presece of dominance. G3: Genes. Genom. Genet. 7, 3405-3414.
Esfandyari H., Sorensen A.C. and Bijma P. (2015). A crossbred reference population can improve the response to genomic selection for crossbred performance. Gen. Sel. Evol. 47, 1-12.
Falconer D.S. and Mackay T.F.C. (1996). Introduction to Quantitative Genetics. Addison Wesley Longman, Harlow, United Kingdom.
Fortest T.M. (2007). Polymorphism in CAPN1, CAST, TG and DGTA1 genes as possible markers for bovine meat quality traits in Zebu and Crosses slaughtered in young age. MS Thesis. University of Sao Paulo, Sao Paulo, Brazil.
Ginting S.P. and Mahmilia F. (2008). Kambing “Boerka”: Kambing tipe pedaging hasil persilangan Boer × Kacang. Wartazoa. 18, 115-126.
Goll D.B., Thompson V.F., LI H., Wei W. and Cong J. (2003). The calpain system. Physiol. Rev. 83, 731-801.
Hall TA. (1999). Bio edit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
Honikel K.O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49, 447-457.
Jahromi E.Z., Ranjbari M., Khaleghizadeh S., Ahrari S., Ahrari I. and Ghavipisheh M. (2015). Allelic polymorphism of calpastatin gene (CAST) in Khalkhali goats: A possible marker for meat tenderness. Iranian J. Appl. Anim. Sci. 5, 905-909.
Javanmard A., Panandam J.M., Sugnaseelan S. and Yusoff K. (2010). Allele frequencies at six candidate genes associated with growth and carcass quality traits in the Boer goats. African J. Biotechnol. 9, 7236-7238.
Khan S.H., Riaz M.N., Ghaffar A. and Khan M.F.U. (2012). Calpastatin (CAST) gene polymorphism and its association with average daily weight gain in Balkhi and Kajli sheep and Beetal goat breeds. Pakistan J. Zool. 44, 377-382.
Koohmaraie M., Shackelford S.D., Wheeler T.L., Longergan S.M. and Doumit M.E. (1995). A muscle hypertrophy condition in lamb (callipyge): Characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 73, 3596-3607.
Li C.M., Li S.F., Zhao Z.H., Huang H.Y., Wang Q.B. and Xue L.G. (2016). Associations of calpastatin gene polymorphism in the 5’regulatory region with meat quality traits in chicken (Gallus gallus). J. Agric. Biotechnol. 24, 76-82.
Liu A., Liu Y., Jiang X., Li L., Di H. and Zhu Q. (2008). Studies of single nucleotide polymorphism of CAST gene and its association with muscle fiber traits in chicken. Acta Vet. Zootec. Sinica. 39, 437-442.
Lonergan S.M., Ernst C.W., Bishop M.D., Calkins C.R. and Koohmaraie M. (1995). Relationship of restriction fragment length polymorphisms (RFLP) at the bovine calpastatin locus to calpastatin activity and meat tenderness. J. Anim. Sci. 73, 3608-3612.
Madruga M.S., Medeiros E.J.L., Sousa W.H., Cunha M.G.G., Filho M.J.P. and Queiroga R.C.R.E. (2009). Chemical composition and fat profile of meat from crossbred goats reared under feedlot systems. Rev. Bras. Zootec. 38, 547-552.
Maharani D., Fathoni A., Sumadi Hartatik T. and Khusnudin M. (2018). Identification of MC4R gene and its association with body weight and body size in Kebumen Ongole Grade cattle. J. Indonesian Trop. Anim. Agric. 43, 87-93.
Moller A.J. (1981). Analysis of Warner-Bratzler shear pattern with regard to myofibrillar and connetive tissue components of tenderness. Meat Sci. 5, 247-260.
Nakaya H.I., Amaral P.P., Louro R., Lopes A., Fachel A.A., Moreira Y.B., El-Jundi T.A., Silva A.M., Reis E.M. and Almeida S.V. (2007). Genome mapping and expression analysses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol. 8, 1-25.
Ortega A., Chito D. and Teixeira A. (2016). Comparative evaluation of physical parameters of salted goat and sheep meat blankets “mantas” from Northeastern Portugal. J. Food Meas. Charact. 10, 670-675.
Othman O.E., Darwish H.R., Abou-Eisha A. and El-Din A.E. (2016). Investigation of calpastatin genetic polymorphism in Egyptian sheep and goat breeds. Biosci. Biotechnol. Res. Asia. 13, 1879-1883.
Pophiwa P., Webb E.C. and Frylinck L. (2017). Carcass and meat quality of Boer and indigenous goats of South Africa under delayed chilling conditions. South African J. Anim. Sci. 47, 798-803.
Ranken M.D. (2000). Handbook of Meat Product Technology. Blackwell Science Ltd., Oxford, USA.
Ropka-Molik K., Bereta A., Tyra M., Rozycki M., Piorkowska K., Szyndler-Nedza M. and Szmatola T. (2014). Association of calpastatin gene polymorphisms and meat quality traits in pig. Meat Sci. 97, 143-150.
Sacca E., Corazzin M., Bovolenta S. and Piasentier E. (2019). Meat quality traits and the expression of tenderness-related genes in the loins of young goats at different ages. Animal. 10, 1-10.
Schönfeldt H., Naude R., Bok W., Van Heerden S., Smit R. and Boshoff E. (1993). Flavour-and tenderness-related quality characteristics of goat and sheep meat. Meat Sci. 34, 363-379.
Sharma R., Maitra A., Pandey A.K., Singh L.V. and Mishra B.P. (2013). Single nucleotide polymorphisms in caprine calpastatin gene. Russian J. Genet. 49, 441-447.
Silva D.C., Guim A., Santos G.R.A., Maciel M.I.S. and Soares L.F.P. (2015). Levels of feed supplementation on the qualitative aspects of meat from crossbred goats finished on caatinga. Cienc. Agron. 46, 855-864.
Singh L.V., Tripathi V., Sharma R., Pandey A.K., Maitra A. and Mishra B.P. (2012). Genetic polymorphism of CAPN1 gene in Sirohi goat. Int. J. Meat Sci. 2, 13-19.
SPSS Inc. (2011). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc., USA.
Strydom P., Luhl J., Kahl C. and Hoffman L.C. (2016). Comparison of shear force tenderness, drip and cooking loss, and ultimate muscle pH of the loin muscle among grass-fed steers of four major beef crosses slaughtered in Namibia. South African J. Anim. Sci. 46, 348-359.
Suryati T., Arief I.I. and Polii B.N. (2008). Correlation and categories of meat tenderness based on equipment and panelist test. Anim. Prod. 10, 188-193.
Tarigan A., Ginting S.P., Arief I.I., Astuti D.A. and Abdullah L. (2018). Body weight gain, nutrients degradability and fermentation rumen characteristics of Boerka goat supplemented green concentrate pellets (GCP) based in Indigofera zollingeriana. Pakistan J. Biol. Sci. 21, 87-94.
Tomovic V.M., Jokanovic M.R., Svarc-Gajic J.V., Vasiljevic I.M., Sojic B.V., Skaljac S.B., Pihler I.I., Simin V.B., Krajinovic M.M. and Zujovic M.M. (2016). Physical characteristics and proximate and mineral composition of Saanen goat male kids meat from Vojvodina (Northern Serbia) as influenced by muscle. Small Rumin. Res. 145, 44-52.
Widiati A.S., Purnomo H. and Luxiawan A. (2002). Kualitas empal daging sapi ditinjau dari kadar protein, aktivitas air dan mutu organoleptik pada sistem pemasakan dan lama perebusan yang berbeda. J. Mitra Akad. 10, 28-29.
Yassen H.M.H., Nada S.M. and Al-Rubeii A.M.S. (2016). Effect of genotypes of calpastatin (CAST) gene for meat quality characteristics in cyprus and local male goats and their crosses. J. Kerbala Agric. Sci. 3, 13-27.
Yeh F.C., Yang R.C., Timothy B.J., Ye Z. and Judy M. (1997). Popgene, the User Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Center, Alberta, Canada.
Zhou H. and Hickford J.G.H. (2008). Allelic polymorphism of the caprine calpastatin (CAST) gene identified by PCR-SSCP. Meat Sci. 79, 403-405.