Effects of Centrifugation and Different Levels of Soybean Lecithin-Based Extender on Post-Thaw Sperm Quality of Ghezel Ram Semen
Subject Areas : Camelم. شمسالهی 1 , ح. دقیقکیا 2 * , غ. مقدم 3 , ا. تقیزاده 4
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Keywords: sperm, freeze-thawing, centrifugation, soybean lecithin,
Abstract :
The objective of this study was to specify the effects of centrifugation and different surface of soybean lecithin-based extender on post-thaw Sperm quality of Ghezel ram semen. Semen samples were gathered from 5 mature Ghezel ram two/week for 3 weeks. After initial evaluation, the approved semen samples were pooled together and split into equal parts in Falcon tubes. Three samples were combined with Tris buffer at 30 ˚C and then centrifuged to remove the seminal plasma. After centrifugation and removal of the supernatant, samples were diluted with Tris-citrate-fructose extender + different concentrations of soybean lecithin (1%, 1.5% and 2% weight/volume) with 7% glycerol; and residual one samples, which were not centrifuged, were diluted with the (1.5% weight/volume) soybean lecithin. Samples then cooled to 5 ˚C and frozen in 0.25 mL French straws and straws were thawed in a 37 ˚C water bath. The results of different concentrations of soybean lecithin showed that total motility (TM) and motion parameters of average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL) and lateral head displacement (ALH) and and the percentage of spermatozoa with intact acrosomes were significantly higher in soybean lecithin (SL) 1.5% compared to other semen extenders (P<0.05). Total motility and sperm-motion parameters (VAP, VSL, VCL and ALH), in SL1.5% without centrifugation were higher than the groups with 1%, 1.5% or 2% and with centrifugation (P<0.05). Generally, the results suggest that SL1.5% extender was better (with or without centrifugation) than other extenders in most in vitro evaluated sperm parameters.
Bucak M.N., Atessahin A., Varisli Ö., Yüce A., Tekin N. and Akcay A. (2007). Influence of trehalose, taurine, cysteamine and hyaluronan on ram semen microscopic and oxidative stress parameters after freeze thawing process, Theriogenology. 67, 1060-1067.
Chelucci S., Pasciu V., Succu S., Addis D., Leoni G.G. and Manca M.E. (2015). Soybean lecithin-based extender preserves spermatozoa membrane integrity and fertilizing potential during goat semen cryopreservation. Theriogenology. 83, 1064-1074.
Cross N.L. (2003). Decrease in order of human sperm lipids during capacitation. Biol. Reprod. 69, 529-534.
Futino D., Mendes M., Matos W., Mondadori R. and Lucci C. (2010). Glycerol, methyl-formamide and dimethyl-formamide in canine semen cryopreservation. Reprod. Domest. Anim. 45, 214-220.
Gadella B.M. and Harrison R.A. (2002). Capacitation induces cyclic adenosine 3', 5'-monophosphate dependent but apoptosis unrelated exposure of amino phospholipids at the apical head plasma membrane of boar sperm cells. Biol. Reprod. 67, 340-350.
Gil J., Söderquist L. and Rodríguez-Martínez H. (1999). Influence of centrifugation and different extenders on post-thaw sperm quality of ram sperm. Theriogenology. 54, 93-108.
Holt W.V. and North R.D. (1994). Effects of temperature and restoration of osmotic equilibrium during thawing on the induction of plasma membrane damage in cryopreserved ram spermatozoa. Biol. Reprod. 51, 414-424.
Purdy P.H. and Graham J.K. (2004). Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm. Cryobiology. 48, 36-45.
Ritar A.J. (1993). Control of ovulation, storage of semen and artificial insemination of fibre-producing goats in Australia a review. Australian J. Exp. Agric. 33, 807-820.
Roostaei A.M.M., Mousavi M. and Ghadamyari M. (2015). Effect of seminal plasma proteins on membrane cholesterol efflux of ram epididymal spermatozoa. Small Rumin. Res. 129, 88-91.
Ruigh L., Bosch J.C., Brus M.C., Landman B. and Merton J.S. (2006). Ways to improve the biosecurity of bovine semen. Reprod. Domest. Anim. 41, 268-274.
Salmani H., Nabi M.M., Vaseghi-Dodaran H., Rahman M.B., Mohammadi-Sangcheshmeh A., Shakeri M., Towhidi A., ZareShahneh A. and Zhandi M. (2013). Effect of glutathione in soybean lecithin-based semen extender on goat semen quality after freeze-thawing. Small Rumin. Res. 112, 123-127.
SAS Institute. (2002). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Thys M., Nauwynck H., Maes D., Hoogewijs M., Vercauteren D., Rijsselaere T., Favoreel H. and Van Soom A. (2009). Expression and putative function of fibronectin and its receptor (integrin a5b1) in male and female gametes during bovine Ram Semen Cryopreservation by Chemically Defined Extender 5 © 2013 Blackwell Verlag GmbH fertilization in vitro. Reproduction. 138, 471-482.
Upreti G.C., Hall E.L., Koppens D., Oliver J.E. and Vishwanath R. (1999). Studies on the measurement of phospholipase A2 (PLA2) and PLA2 inhibitor activities in ram semen. Anim. Reprod. Sci. 56, 107-121.
Ustuner B., Alçay S., Nur Z., Sag Rkaya H. and Soylu M.K. (2014). Effect of egg yolk and soybean lecithin on tris-based extender in post-thaw ram semen quality and in vitro fertility. Kafkas Univ. Vet. Fak. Derg. 20(3), 393-398.
Vidal A.H., Batista A.M., da Silva E.C.B., Gomes W.A., Pelinca M.A. and Silva S.V. (2013). Soybean lecithin-based extender as an alternative for goat sperm cryopreservation. Small Rumin. Res. 109, 47-51.
Waterhouse K.E., Hofmo P.O., Tverdal A. and Miller J.R. (2006). Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction. 131, 887-894.
Zhang S.S., Hu J.H., Li Q.W., Jiang Z.L. and Zhang X.Y. (2009). The cryoprotective effects of soybean lecithin on boar spermatozoa quality. African J. Biotechnol. 8, 6476-80.