Inoculation of Corn Seedlings with Piriformospora indica Influences Grain Biomass Yield, Forage Quality, Rumen Degradation Kinetics and Fourier Transformed Infrared Spectroscopy Molecular Structures
Subject Areas : CamelK. Safaee 1 , م. یاری 2 , M. Ghabooli 3 , M. Rostami 4 , E. Ghasemi 5
1 - Department of Animal Science, Malayer University, Malayer, Iran
2 - گروه علوم دامی، دانشگاه ملایر، ملایر، ایران
3 - Department of Agronomy and Plant Breeding, Malayer University, Malayer, Iran
4 - Department of Agronomy and Plant Breeding, Malayer University, Malayer, Iran
5 - Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
Keywords: corn grain, nutritive value, FTIR, Symbiosis, corn silage,
Abstract :
Piriformospora indica (P. indica) as a root growth promoting endophyte may improve corn grain production and forage quality in ruminant under semi-arid climate condition. The aim of current study was to evaluate the influence of corn seedling- P. indica endophyte inoculation on grain and forage biomass yield, nutritive value and Fourier transformed infrared spectroscopy (FTIR) of molecular structures. Corn seedlings were inoculated with P. indica and were grown under natural condition and were compared with control group (12 experimental boxes per each treatment). Half of the experimental boxes from each treatment selected to make corn silage and the other half remained for grain biomass yield. Inoculation with P. indica increased grain biomass yield (P=0.05) but had no impact on chemical composition except for total carbohydrate content which tended to be greater for P. indica-inoculated group (p <0.10). Leaf to stem ratio decreased (P=0.04) and ether extract increased in silages from treated corn compared with control group (P=0.04). In situ ruminal dry matter and organic matter degradability at 24 h of ruminal incubation were greater in P. indica corn grain from inoculated samples compared with control grain samples (P=0.02). Silage from P. indica group had greater in vitro rate of gas production (p <0.05) and tended to have greater volume of gas produced until 24 h of incubation (P=0.06). The FTIR ratio between amid I to amid II and amid II to lignin area tended to decrease in silages from P. indica group compared with control group samples (P=0.09). The principle component analysis differentiated the FTIR area related to carbohydrate between experimental groups. In conclusion, under semi-arid climate condition inoculation of corn seedlings with P .indica may improve the feeding value of corn seed and silage in ruminants.
AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Augé R.M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11(1), 3-42.
Chapin Iii F.S., Zavaleta E.S., Eviner V.T., Naylor R.L., Vitousek P.M., Reynolds H.L., Hooper D.U., Lavorel S., Sala O.E. and Hobbie S.E. (2000). Consequences of changing biodiversity. Nature. 405(6783), 234-241.
Ghabooli M. (2014). Effect of Piriformospora indica inoculation on some physiological traits of barley (Hordeum vulgare) under salt stress. Chem. Nat. Comp. 50(6), 1082-1087.
Ghabooli M., Khatabi B., Ahmadi F.S., Sepehri M., Mirzaei M., Amirkhani A., Jorrín-Novo J.V. and Salekdeh G.H. (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteomics. 94, 289-301.
Ghaffari M.R., Ghabooli M., Khatabi B., Hajirezaei M.R., Schweizer P. and Salekdeh G.H. (2016). Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol. Biol. 90(6), 699-717.
Hashemzadeh-Cigari F., Khorvash M., Ghorbani G., Ghasemi E., Taghizadeh A., Kargar S. and Yang W. (2014). Interactive effects of molasses by homofermentative and heterofermentative inoculants on fermentation quality, nitrogen fractionation, nutritive value and aerobic stability of wilted alfalfa (Medicago sativa) silage. J. Anim. Physiol. Anim. Nutr. 98(2), 290-299.
Hosseini F., Mosaddeghi M.R., Dexter A.R. and Sepehri M. (2018). Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses. Planta. 247(5), 1229-1245.
Iranian Council of Animal Care. (1995). Guide to the Care and Use of Experimental Animals. Isfahan University of Technology, Isfahan, Iran.
Jafari M., Yari M., Ghabooli M., Sepehri M., Ghasemi E. and Jonker A. (2018). Inoculation and co-inoculation of alfalfa seedlings with root growth promoting microorganisms (Piriformospora indica, Glomus intraradices and Sinorhizobium meliloti) affect molecular structures, nutrient profiles and availability of hay for ruminants. Anim. Nutr. 4(1), 90-99.
Jung H. and Allen M. (1995). Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 73(9), 2774-2790.
Khan N.A., Cone J.W., Pellikaan W.F., Khan M.A., Struik P.C. and Hendriks W.H. (2011). Changes in fatty acid content and composition in silage maize during grain filling. J. Sci. Food Agric. 91(6), 1041-1049.
Kristek S., Kristek A. and Pavlovic H. (2005). The influence of mycorrhizal fungi (Glomus sp.) on field pea plant survival and growth in drought caused stress conditions. Plant Soil Environ. 51(9), 385-392.
Krizsan S., Nyholm L., Nousiainen J., Südekum K.H. and Huhtanen P. (2012). Comparison of in vitro and in situ methods in evaluation of forage digestibility in ruminants. J. Anim. Sci. 90(9), 3162-3173.
Kumar M., Yadav V., Tuteja N. and Johri A.K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology. 155(3), 780-790.
Macome F., Pellikaan W.F., Hendriks W., Dijkstra J., Hatew B., Schonewille J. and Cone J.W. (2017). In vitro gas and methane production of silages from whole-plant corn harvested at 4 different stages of maturity and a comparison with in vivo methane production. J. Dairy Sci. 100(11), 8895-8905.
Mannion A. and Morse S. (2013). A review of Agronomic, Environmental and Socio-Economic Impacts. Centre for Environmental Strategy, University of Surrey, United Kingdom.
Menke K.H. and Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7-55.
Murphy B.R., Doohan F.M. and Hodkinson T.R. (2014). Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis. 62(1), 29-39.
Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A. and Ashraf M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32(2), 429-448.
Newman E. and Reddell P. (1987). The distribution of mycorrhizas among families of vascular plants. New Phytol. 106(4), 745-751.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC., USA.
Origin(Pro). (2019). OriginLab Corporation, Northampton, Massachusetts, USA.
Ørskov E. and McDonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92(2), 499-503.
Parmesan C. and Yohe G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature. 421(6918), 37-42.
Peškan-Berghöfer T., Shahollari B., Giong P.H., Hehl S., Markert C., Blanke V., Kost G., Varma A. and Oelmüller R. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol. Plant. 122(4), 465-477.
Pham G.H., Kumari R., Singh A., Malla R., Prasad R., Sachdev M., Kaldorf M., Buscot F., OelmŘller R. and Hampp R. (2008). Axenic culture of symbiotic fungus Piriformospora indica. Plant Surf. Microbiol. 1, 593-613.
Philippeau C. and Michalet-Doreau B. (1997). Influence of genotype and stage of maturity of maize on rate of ruminal starch degradation. Anim. Feed Sci. Technol. 68(1), 25-35.
Refat B., Prates L.L., Khan N.A., Lei Y., Christensen D.A., McKinnon J.J. and Yu P. (2017). Physiochemical characteristics and molecular structures for digestible carbohydrates of silages. J. Agric. Food Chem. 65(41), 8979-8991.
SAS Institute. (2015). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Sheaffer C.C., Halgerson J. and Jung H. (2006). Hybrid and N fertilization affect corn silage yield and quality. J. Agron. Crop Sci. 192(4), 278-283.
Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B. and France J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48(3), 185-197.
Van Soest P.V., Robertson J. and Lewis B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583-3597.
Varma A., Verma S., Sahay N., Bütehorn B. and Franken P. (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 65(6), 2741-2744.
Verma S., Varma A., Rexer K.H., Hassel A., Kost G., Sarbhoy A., Bisen P., Bütehorn B. and Franken P. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia. 90(5), 896-903.
Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., Heier T., Hückelhoven R., Neumann C. and Von Wettstein D. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. US. 102(38), 13386-13391.
Wu M., Wei Q., Xu L., Li H., Oelmüller R. and Zhang W. (2018). Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil. 432(1), 333-344.
Yari M., Valizadeh R., Naserian A.A., Jonker A. and Yu P. (2013). Protein molecular structures in alfalfa hay cut at three stages of maturity and in the afternoon and morning and relationship with nutrient availability in ruminants. J. Sci. Food Agric. 93(12), 3072-3080.
Yari M., Valizadeh R., Nnaserian A.A., Jonker A. and Yu P. (2017). Carbohydrate and lipid spectroscopic molecular structures of different alfalfa hay and their relationship with nutrient availability in ruminants. Asian Australasian J. Anim. 30(11), 1575.
Yu P. (2005). Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based fourier transform infrared (FTIR) microspectroscopy. J. Agric. Food Chem. 53, 7115-7127.
Zhang W., Wang J., Xu L., Wang A., Huang L., Du H., Qiu L. and Oelmüller R. (2018). Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav. 13(1), e1414121.