Situations Leading to Oxidative Stress in Dairy Cattle
Subject Areas : Camelج. گونزالز-مالدونادو 1 , ر. رانگل-سانتوس 2 , ر. رودریگز-دلارا 3 , گ. رامیرز-والورده 4
1 - Departamento de Zootecnia, Universidad Autónoma Chapingo, 56230, Estado de México, México
2 - Departamento de Zootecnia, Universidad Autónoma Chapingo, 56230, Estado de México, México
3 - Departamento de Zootecnia, Universidad Autónoma Chapingo, 56230, Estado de México, México
4 - Departamento de Estadística, Colegio de Postgraduados, Carretera México Texcoco km 36.5, Montecillo 56230, Estado de México, México
Keywords: bovine, antioxidants, cellular response, oxidants,
Abstract :
Free radicals are normally produced by living organism, at controlled production rate they perform physiological functions as signal transduction molecules. However, situations leading to an overproduction that surpasses antioxidant capacity creates oxidative stress. Consequently, damage to the cell membrane, protein, DNA and cell death are observed. Dairy cattle are susceptible to oxidative stress. Situations such as infections, metabolic disorders and heat stress are known to cause oxidative stress in cattle by depleting body antioxidants concentrations or by increasing endogenous free radical production. The organism response to oxidative stress by activating cell factors that after evaluating the damage to cell, a repair or death signal will be programmed. The objective of this review is to empower the reader with knowledge related to oxidative stress and to provide information on the situations leading to this type of stress and the cellular response to it in dairy cattle.
Abaker J.A., Xu T.L., Jin D., Chang G.J., Zhang K. and Shen X.Z. (2017). Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet. J. Dairy Sci. 100, 666-678.
Aprioku S.J. (2013). Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J. Reprod. Infertil. 14, 158-172.
Atakisi O., Oral H., Atakisi E., Merhan O., Metin-Pancarci S., Ozcan A., Marasli S., Polat B., Colak A. and Kaya S. (2010). Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Res. Vet. Sci. 89, 10-13.
Bahrami S., Esmaeilzadeh S. and Oryan A. (2014). Role of oxidative stress in concomitant occurrence of Fasciola gigantica and leiomyoma in cattle. Vet. Parasitol. 203, 43-50.
Berlett B.S. and Stadtman E.R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316.
Bhattacharya S. (2014). Reactive oxygen species and cellular defense system. Pp. 17-29 in Free Radicals in Human Health and Disease. Springer, New Delhi, India.
Bochkov V.N., Oskolkova O.V., Birukov K.G., Levonen A.L., Binder C.J. and Stöckl J. (2010). Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal 12, 1009-1059.
Bordignon M., Da-Dalt L., Marinelli L. and Gabai G. (2014). Advanced oxidation protein products are generated by bovine neutrophils and inhibit free radical production in vitro. Vet. J. 199, 162-168.
Brunet L.R. (1991). Nitric oxide in parasitic infections. Int. Immunopharmacol. 1, 1457-1467.
Cadet J. and Wagner J.R. (2013). DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Biol. 5, 1-18.
Celi P. (2011). Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol. Immunotoxicol. 33, 233-240.
Celi P. and Gabai G. (2015). Oxidant / antioxidant balance in animal nutrition and health: the role of protein oxidation. Front. Vet. Sci. 2, 1-13.
Celi P., Merlo M., Barbato O. and Gabai G. (2012). Relationship between oxidative stress and the success of artificial insemination in dairy cows in a pasture-based system. Vet. J. 193, 498-502.
Celi P., Merlo M., Da-Dalt L., Stefani A., Barbato O. and Gabai G. (2011). Relationship between late embryonic mortality and the increase in plasma advanced oxidized protein products (AOPP) in dairy cows. Reprod. Fertil. Dev. 23, 527-533.
Cigliano L., Strazzullo M., Rossetti C., Grazioli G., Auriemma G., Sarubbi F., Iannuzzi C., Iannuzzi L. and Spagnuolo M.S. (2014). Characterization of blood redox status of early and mid-late lactating dairy cows. Czech. J. Anim. Sci. 59, 170-181.
David S.S., O'Shea V.L. and Kundu S. (2007). Base-excision repair of oxidative DNA damage. Nature. 447, 941-950.
De Bie J., Langbeen A., Verlaet A.A.J., Florizoone F., Immig I., Hermans M., Fransen E., Bols P.E.J. and Leroy L.M.R. (2016). The effect of a negative energy balance status on β-carotene availability in serum and follicular fluid of nonlactating dairy cows. J. Dairy Sci. 99, 5808-5819.
Ellah M.R.A. (2013). Involvement of free radicals in parasitic infestations. J. Appl. Anim. Res. 41, 69-76.
Ellah M.R.A., Okada K., Shimamura S., Kobayashi S., Sato R. and Yasuda J. (2014). Status of oxidative DNA damage in serum and saliva of dairy cows during lactation and dry period. J. Anim. Vet. Adv. 13, 577-581.
Ellah M.R.A., Okada K., Uchiza M., Morita E., Sato R. and Yasuda J. (2016). Evaluation of oxidative DNA damage in blood lymphocytes during the transition period in dairy cows. J. Appl. Anim. Res. 44, 323-325.
Esterbauer H., Eckl P. and Ortner A. (1990). Possible mutagens derived from lipids and lipid precursors. Mutat. Res. 238, 223-233.
Esterbauer H., Schaur R.J. and Zollner H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81-128.
Feng Z., Hu W., Marnett L.J. and Tang M.S. (2006). Malondialdehyde, a major endogenous lipid peroxidation product, sensitizes human cells to UV- and BPDE induced killing and mutagenesis inhibition of nucleotide excision repair. Mutat. Res. 601, 125-136.
Gessner D.K., Schlegel G., Keller J., Schwarz F.J., Ringseis R. and Eder K. (2013). Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. J. Dairy Sci. 96, 1038-1043.
Gloire G., Legrand-Poels S. and Piette J. (2006). NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 72, 1493-1505.
Gong J. and Xiao M. (2016). Selenium and antioxidant status in dairy cows at different stages of lactation. Biol. Trace Elem. Res. 171, 89-93.
Gorrini C., Harris I.S. and Mak T.W. (2013). Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947.
Greenberg M.E., Li X.M., Gugiu B.G., Gu X., Qin J., Salomon R.G. and Hazen S.L. (2008). The lipid whisker model of the structure of oxidized cell membranes. J. Biol. Chem. 283, 2385-2396.
Halliwell B. and Gutteridge J.M. (1995). The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 18, 125-126.
Halliwell B., Aeschbach R., Löliger J. and Aruoma O.I. (1995). The characterization of antioxidants. Food Chem. Toxicol. 33, 601-617.
Halliwell B. and Whiteman M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean?. Br. J. Pharmacol. 142, 231-255.
Häring M., Rüdiger H., Demple B., Boiteux S. and Epe B. (1994). Recognition of oxidized abasic sites by repair endonucleases. Nucleic Acids Res. 22, 2010-2015.
Hawkins C.L., and Davies M.J. (2001). Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta. 1504, 196-219.
Hayes J.D. and Dinkova-Kostova A.T. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199-218.
Jastroch M., Divakaruni A.S., Mookerjee S., Treberg J.R. and Brand M.D. (2010). Mitochondrial proton and electron leaks. Essays Biochem. 47, 53-67.
Jin X.L., Wang K., Liu L., Liu H.Y., Zhao F.Q. and Liu J.X. (2016). Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells. J. Dairy Sci. 99, 9094-9103.
Knight J.A. (2000). Review: Free radicals, antioxidants, and the immune system. Ann. Clin. Lab. Sci. 30, 145-158.
Kryston T.B., Georgiev A.B., Pissis P. and Georgakilas A.G. (2011). Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 711, 193-201.
Kuppusamy P. and Zweier J.L. (1989). Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J. Biol. Chem. 264, 9880-9884.
Levine R.L., Mosoni L., Berlett B.S. and Stadtman E.R. (1996). Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA. 93, 15036-15040.
Linares E., Giorgio S., Mortara R.A., Santos C.X., Yamada A.T. and Augusto O. (2001). Role of peroxynitrite in macrophage microbicidal mechanisms in vivo revealed by protein nitration and hydroxylation. Free Radic. Biol. Med. 30, 1234-1242.
Liu D. and Xu Y. (2011). p53, oxidative stress, and aging. Antioxid. Redox. Signal. 15, 1669-1678.
Mandebvu P., Castillo J.B., Steckley D.J. and Evans E. (2003). Total antioxidant capacity: A tool for evaluating the nutritional status of dairy heifers and cows. Canadian J. Anim. Sci. 83, 605-608.
Mittal M., Siddiqui M.R., Tran K., Reddy S.P. and Malik A.B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal. 20, 1126-1167.
Niedernhofer L.J., Daniels J.S., Rouzer C.A., Greene R.E. and Marnett L.J. (2003). Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 278, 31426-31433.
Omidi A., Fathi M.H. and Parker M.O. (2016). Alterations of antioxidant status markers in dairy cows during lactation and in the dry period. J. Dairy Res. 84, 49-53.
Pamplona R. (2008). Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim. Biophys. Acta. 1777, 1249-1262.
Pedernera M., Celi P., García S.C., Salvin H.E., Barchia I. and Fulkerson W.J. (2010). Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. Vet. J. 186, 352-357.
Piccione G., Borruso M., Giannetto C., Morgante M. and Giudice E. (2007). Assessment of oxidative stress in dry and lactating cows. Acta Agric. Scand. Sect. A. 57, 101-104.
Radi R., Beckman J.S., Bush K.M. and Freeman B.A. (1991). Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288, 481-487.
Raetz C.R. and Whitfield C. (2002). Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635-700.
Ranjan R., Swarup D., Naresh R. and Patra R.C. (2005). Enhanced erythrocytic lipid peroxides and reduced plasma ascorbic acid, and alteration in blood trace elements level in dairy cows with mastitis. Vet. Res. Commun. 29, 27-34.
Reddy J.K. (2001). Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal beta-oxidation, PPAR alpha, and steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 281, 1333-1339.
Rittié L., Monboisse J.C., Gorisse M.C. and Gillery P. (2002). Malondialdehyde binding to proteins dramatically alters fibroblast functions. J. Cell Physiol. 191, 227-236.
Roos D. (1991). The involvement of oxygen radicals in microbicidal mechanisms of leukocytes and macrophages. Wein. Klin. Wochenschr. 69, 975-980.
Sharma N., Singh N.K., Singh O.P., Pandey V. and Verma P.K. (2011). Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Australasian J. Anim. Sci. 24, 479-484.
Shi H., Guo Y., Liu Y., Shi B., Guo X., Jin L. and Yan S. (2016). The in vitro effect of lipopolysaccharide on proliferation, inflammatory factors and antioxidant enzyme activity in bovine mammary epithelial cells. Anim. Nutr. 2, 99-104.
Shi X., Li X., Li D., Li Y., Song Y., Deng Q., Wang J., Zhang Y., Ding H., Yin L., Zhang Y., Wang Z., Li X. and Liu G. (2014). β-Hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes. Cell Physiol. Biochem. 33, 920-932.
Silva A.D., da Silva A.S., Baldissera M.D., Schwertz C.I., Bottari N.B., Carmo G.M., Machado G., Lucca N.J., Henker L.C., Piva M.M., Giacomin P., Morsch V.M., Schetinger M.R., da Rosa R.A. and Mendes R.E. (2016). Oxidative stress in dairy cows naturally infected with the lungworm Dictyocaulus viviparus (Nematoda: Trichostrongyloidea). J. Helminthol. 27, 1-8.
Song Y., Li X., Li Y., Li N., Shi X., Ding H., Zhang Y., Li X., Liu G. and Wang Z. (2014). Non-esterified fatty acids activate the ROS-p38-p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis. 19, 984-997.
Song Y., Li N., Gu J., Fu S., Peng Z., Zhao C., Zhang Y., Li X., Wang Z., Li X. and Liu G. (2016). β-hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway. J. Dairy Sci. 99, 9184-9198.
Stadtman E.R. and Levine R.L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 25, 207-218.
Suriyasathaporn W., Vinitketkumnuen U., Chewonarin T., Boonyayatra S., Kreausukon K. and Schukken Y.H. (2006). Higher somatic cell counts resulted in higher malondialdehyde concentrations in raw cows’ milk. Int. Dairy J. 16, 1088-1091.
Tharwat M., Takamizawa A., Hosaka Y.Z., Endoh D. and Oikawa S. (2012). Hepatocyte apoptosis in dairy cattle during the transition period. Canadian J. Vet. Res. 76, 241-247.
Tian W., Wei T., Li B., Wang Z., Zhang N. and Xie G. (2014). Pathway of programmed cell death and oxidative stress induced by β-hydroxybutyrate in dairy cow abomasum smooth muscle cells and in mouse gastric smooth muscle. PLoS One. 9, e96775.
Turk R., Juretić D., Geres D., Svetina A., Turk N. and Flegar-Mestric Z. (2008). Influence of oxidative stress and metabolic adaptation on PON1 activity and MDA level in transition dairy cows. Anim. Reprod. Sci. 108, 98-106.
Valko M., Rhodes C.J., Moncol J., Izakovic M. and Mazur M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1-40.
Wada T. and Penninger J.M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 23, 2838-2849.
Wang X., Martindale J.L., Liu Y. and Holbrook N.J. (1998). The cellular response to oxidative stress: influences of mitogen-activated protein kinase signaling pathways on cell survival. Biochem. J. 333, 291-300.
Weiss W.P., Hogan S.J. and Smith K.L. (2004). Changes in vitamin C concentrations in plasma and milk from dairy cows after an intramammary infusion of Escherichia coli. J. Dairy Sci. 87, 32-37.
Yan L.J. (2014). Protein redox modification as a cellular defense mechanism against tissue ischemic injury. Oxid. Med. Cell. Longev. 2014, 1-12.
Yoshikawa T. and Naito Y. (2002). What is oxidative stress? J. Japan Med. Assoc. 45, 271-276.
Zhang W., Xiao S. and Ahn D.U. (2013). Protein oxidation: basic principles and implications for meat quality. Crit. Rev. Food Sci. Nutr. 53, 1191-1201.
Zimov J.L., Botheras N.A., Weiss W.P. and Hogan J.S. (2011). Associations among behavioral and acute physiologic responses to lipopolysaccharide-induced clinical mastitis in lactating dairy cows. Am. J. Vet. Res. 72, 620-627.