Determining Relative Bioavailability of Different Manganese Sources in Broiler Diets
Subject Areas : Camelh. یعقوبفر 1 , H.R. Ghalamkari 2 , N. Sanei 3 , M. Ebrahimnejad 4
1 - عضو هیئت علمی موسسه تحقیقات علوم دامی کشور
2 - Sepahan Daneh Parsian Co., Isfahan, Iran
3 - Sepahan Daneh Parsian Co., Isfahan, Iran
4 - Sepahan Daneh Parsian Co., Isfahan, Iran
Keywords: ileal digestibility, manganese mono oxide, Mn retention, relative bioavailability value (RBV), tibia bone,
Abstract :
This study aimed to evaluate the relative bioavailability value (RBV) of different manganese mono oxide (MnO) sources and manganese sulfate (MnSO4) in broiler diets as well as their effect on tibial characteristics, and serum inorganic phosphorous (P), calcium (Ca) and Mn concentrations. The experiment was carried out based on a completely randomized design (CRD) with 660 broiler chicks (Ross 308) assigned to 12 dietary treatments with 6 replicates of 10 birds each. The experimental diets consisted of one basal diet (as control), and 10 treatment groups which were supplemented with 400 or 800 mg/kg of feed of 1-5 MnO sources with 35%, 25%, 45-55%, 30%, and 40% purities, respectively; MnSO4 was also used (800 mg/kg of feed) in a treatment group as a reference standard with 100% bioavailability. The mean RBV of MnO sources (27.27 to 181.82%) showed a significant difference (P<0.05). The results also showed sera Ca and Mn concentrations, and retention of Mn in diet and tibia bone were significantly affected by different Mn sources used (P<0.05). Although no differences were observed for sera P, Ca, and Mn concentrations, regardless of the level of supplementation (P<0.05). The results of this study demonstrated that the purity of Mn supplement sources has a relationship with RBV of Mn, Mn absorption, and its retention in broiler bone and ileum.
Ammerman C.B., Henrty P.R. and Miles R.D. (1998). Supplemental organically-bound mineral compounds in livestock nutrition. Pp. 67-91 in Recent Advances in Animal Nutrition. P.C. Garnsworthy and J. Wiseman, Eds. Nottingham University Press, Nottingham, United Kingdom.
AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Bach Knudsen K.E. (2001). The nutritional significance of ‘‘dietary fiber’’ analysis. Anim. Feed Sci. Technol. 90, 3-20.
Baker D.H. and Halpin K.M. (1987). Research note: Efficacy of a manganese-protein chelate compared with that of manganese sulfate for chicks. Poult. Sci. 66, 1561-1563.
Bao Y.M., Choct M., Iji P.A. and Bruerton K. (2007). Effect of organically complexes copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poult. Res. 16, 448-455.
Bertinchamps A.J., Miller S.T. and Cotzias G.C. (1966). Interdependence of routes excreting manganese. American. J. Physiol. 211, 217-225.
Black J.R., Ammerman C.B., Henry P.R. and Milles R.D. (1984). Biological availability of manganese sources and effects of high dietary manganese on tissue mineral composition of broiler-type chicks. Poult. Sci. 63, 1999-2006.
Cook D.A. (1973). Availability of magnesium: Balance studies in rats with various inorganic magnesium salts. J. Nutr. 103, 1305-1312.
Fly A.D., Izquierdo O.A., Lowry K.L. and Baker D.H. (1989). Manganese bioavailability in a manganese-methionine chelate. Nutr. Res. 9, 901-910.
Hahn J.D. and Baker D.H. (1993). Growth and plasma zinc responses of young pigs fed pharmacological levels of zinc. J. Anim. Sci. 71, 3020-3028.
Henry P.R., Ammerman C.B. and Miles R.D. (1989). Relative bioavailability of manganese in a manganese-methionine complex for broiler chicks. Poult. Sci. 68, 107-112.
Kadim I.T. and Moughan P.J. (1997). Development of an ilea digestibility assay for the growing chiken- effect of the imposition of a fasting period and the nature of the test diet. Brezilian Poult. Sci. 38, 285-290.
Kadim I.T., Moughan P.J. and Ravindran V. (2002). Ileal amino acid digestibility assay for the growing meat chicken comparison of ileal and excreta amino acid digestibility in the chicken. Brezilian Poult. Sci. 43(4), 587-597.
Keen C.L., Ensunsa J.L., Watson M.H., Baly D.L., Donovan S.M., Monaco M.H. and Clegg M.S. (1999). Nutritional aspects of manganese from experimental studies. Neurotoxicology. 20, 213-224.
Khakpour F., Janmohammadi H., Kianfar R. and Sahraei M. (2019). Evaluation of chemical characteristics and effects of different manganese sources on kinetics of manganese absorption and performance of broiler chickens. Iranian J. Appl. Anim. Sci. 9(3), 463-471.
Littell R.C., Henry P.R., Lewis A.J. and Ammerman C.B. (1997). Estimate of relative bioavailability of nutrients using SAS procedures. J. Anim. Sci. 75, 2672-2683.
Littell R.C., Lewis A.J. and Henry P.R. (1995). Statistical evaluation of bioavailability assays. Pp. 5-35 in Bioavailability of Nutrients for Animals. C.B. Ammerman, Ed. Academic Press, San Diego, California.
Lonnerdal B., Keen C.L., Bell J.G. and Sandstrom B. (1987). Manganese uptake and retention. Pp. 7-20 in Nutritional Bioavailability of Manganese. C. Kies, Ed. American Chemical Society, Anaheim, California.
Luo X.G. (1989). Studies on manganese requirement and its bioavailability in practical diets for broiler chicks. Ph D. Thesis. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
Meijer H. and Kroger H. (1973). Kupferfütterung beim Schwein. Uebers. Tierernaehr. 1, 4-9.
Mohanna A.C. and Nys Y. (1998). Influence of age, sex and cross on body concentrations of trace elements (zinc, iron, copper and manganese) in chickens. Brezilian Poult. Sci. 39, 536-543.
Moomaw E.W., Angerhofer A., Moussatche P., Ozarowski A., Garciarubio I. and Richards N.G.J. (2009). Metal dependence of oxalate decarboxylase activity. Biochemistry. 48, 6116-6125.
Park S.Y., Birkhold S.G., Kubena L.F., Nisbet D.J. and Ricke S.C. (2003). Effect of storage condition on bone breaking strength and bone ash in laying hens at different stages in production cycles. Poult. Sci. 82, 1688-1691.
Ranhotra G.S., Loewe R.J. and Puyat L.V. (1976). Bioavailability of magnesium from wheat flour and various organic and inorganic. Cereal. Chem. 53, 770-777.
Rutherfurd S.M., Chung T.K., Thomas D.V., Zou M.L. and Moughan P.J. (2012). Effect of a novel phytase on growth performance, AME and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci. 91, 1118-1127.
Saima M.Z., Khan U., Jabbar M.A., Ija M. and Qadeer M.A. (2009). Efficacy of microbial phytates at different levels on growth performance and mineral availability in broiler chickens. J. Anim. Plant Sci. 19, 58-62.
Sandstrom B. (1997). Bioavailability of zinc. European J. Clin. Nutr. 51(1), 17-19.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Scott M.L., Nesheim M.C. and Young R.J. (1976). Scott’s Nutrition of the Chicken, Ithica, New York, USA.
Sebastian S., Touchburn S.P., Chavez E.R. and Lague P.C. (1996). Efficacy of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper and zinc in broiler chickens fed corn-soybean meal diets. Poult. Sci. 75, 729-736.
Seedor J.G. (1993). The biophosphanate alendronate (MK-217) inhibit bone loss due to ovariectomy in rats. J. Bone. Miner. Res. 4, 265-270.
Seedor J.G. (1995). The biophosphanate alendronate (MK-217) inhibit bone loss due to ovariectomy in rats. J. Bone. Miner. Res. 4, 265-270.
Seedor J.G., Quarruccio H.A. and Thompson D.D. (1991). The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J. Bone. Miner. Res. 6, 339-346.
Smith M.O., Sherman I.L., Miller L.C. and Robbins K.R. (1995). Relative biological availability of manganese from manganese protein ate, manganese sulfate, and manganese monoxide in broilers reared at elevated temperatures. Poult. Sci. 74, 702-707.
Southern L.L., Baker D.H. and Halpin K.M. (1987). Manganese homeostasis in the chick. Pp. 35-45 in Nutritional Bioavailability of Manganese. C. Kies, Ed. American Chemical Society, Anaheim, California.
Suzuki H. and Wada O. (1981). Role of liver lysosomes in uptake and biliary excretion of manganese in mice. Environ. Res. 26, 521-528.
Underwood E.J. (1977). Trace Elements in Human and Animal Nutrition. Academic Press, New York, USA.
Underwood E.J. and Suttle N. (1999). The Mineral Nutrition of Livestock. CAB International, Wallingford, United Kingdom.
Van Der Klis J.D., Verstegen M.W.A. and Van Voorst A. (1993). Effect of a soluble polysaccharide (carboxy methyl cellulose) on the absorption of minerals from the gastrointestinal tract of broilers. British Poult. Sci. 34, 985-997.
Wedekind K.J., Hortin A.E. and Baker D.H. (1992). Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 70, 178-187.
Wong-Valle J., Ammerman C.B., Henry P.R. and Miles R.D. (1988). Bioavailability of Mn as feed grade Mn oxides for chicks. Poult. Sci. 68, 1368-1373.
Yan F. and Waldroup P.W. (2006). Evaluation of mintrex manganese as a source of manganese for young broilers. Int. J. Poult. Sci. 5, 708-713.
Zhang B. and Coon C.N. (1997). The relationship of calcium intake, source, size, solubility in vitro and in vivo, and gizzard limestone retention in laying hens. Poult. Sci. 76, 1698-1701.