A New Precision–Fed Chick Assay for Determining True Metabolizable Energy Values of some Poultry Feed Ingredients for Broiler Chickens
Subject Areas : Camelا. رضایی 1 , ح. جانمحمدی 2 , م. علیایی 3 , ص. علیجانی 4
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Keywords: broiler chicks, nitrogen-corrected true metabolizable energy, precision-fed,
Abstract :
Two experiments were conducted to determine: first, the best time of excreta collection after force feeding of broilers to yield the maximal amount of excreta, and second, nitrogen-corrected true metabolizable energy contents of some poultry feedstuffs including yellow corn, soybean meal, corn gluten meal, canola meal and poultry by-product meal by a new precision-fed chick assay using 3-week-old broiler chicks. In experiment one, thirty-five 21-d-old male broiler chicks, with the same body weight were randomly assigned in to 7 experimental groups with 5 birds per each. Seven experimental treatments were designed with different excreta collection times. All chicks were precision-fed with 10 g of corn-soybean meal (60:40) mixture. Excreta were collected at 2, 4, 6, 8, 10, 12, and 14 h after precision feeding. In experiment two, thirty 21-d old male broiler chicks with 5 chicks per each feed ingredients were precision-fed by 10 g of experimental feedstuffs and 5 chicks fasted for determining endogenous energy losses. The maximum time of excreta collection for 3-week-old male broiler chicks was approximately 12 h after precision feeding. The average nitrogen-corrected true metabolizable energy values of yellow corn, soybean meal, corn gluten meal, canola meal and poultry by-product meal, were 3527.55, 2572.4, 4183.25, 1806.38 and 2678.06 kcal/kg, respectively. In conclusion, nitrogen-corrected true metabolizable energy values of feedstuffs can be determined in 3-week-old broiler chicks by using a precision-fed assay. This research suggests using energy values obtained on young broiler chicks in formulating diets for the same birds.
AOAC. (2005). Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Bell J.M. (1993). Factors affecting the nutritional value of canola meal: A review. Canadian J. Anim. Sci. 73, 679-697.
Brumano G., Gomes P.C., Albino L.F.T., Hostagno H.S., Geeneroso R.A.R. and schmidt M. (2006). Composição química e valores de energia metabolizável de alimentos protéicos para frangos de corte em diferentes idades. R. Bras. Zootec. 35(6), 2297-2302.
Colovic R., Pezo L. and Palic D. (2015). Prediction of metabolizable energy content of poultry feedstuffs response surface methodology vs. artificial neural network approach. Bulgarian J. Agric. Sci. 21, 1069-1075.
Dale N., Fancher B., Zumbado M. and Villacres A. (1993). Metabolizable energy content of poultry offal meal. J. Appl. Poult. Res. 2, 40-42.
Dale N.M. and Fuller H.L. (1979). Additivity of true tetabolizable tnergy talues as teasured with toosters, broiler chicks and poults. Poult. Sci. 59, 1941-1942.
De Leon A.C., Kidd M.T. and Corzo A. (2010). Box-Behnken Design: Alternative multivariate design in broiler nutrition research. World’s Poult. Sci. J. 66, 699-706.
Freitas E.R., Sakomura N.K., Ezequiel J.M.B., Neme R. and Mendonca M.D.O. (2006). Energia metabolizável de alimentos na formulação de ração para frangos de corte. Pesq. Agropec. Bras. 41(1), 107-115.
Gheisari A., Toghyani M., Shavakhi M. and Ghayor P. (2014). Metabolizable energy value of guar meal for broiler chicks can be influenced by method of determination. Pp. 23-28 in Proc. 25th Australian Poult. Sci. Symp., Sydney, Australia.
Gurbuz Y., Cetin M. and Sengul T. (2009). Effect of phytase supplementation on performance, tibia ash and serum p in broilers fed diets with different levels of phosphorus. J. Appl. Anim. Res. 36, 137-140.
Han Y. and Parsons C.M. (1990). Determination of available amino acids and energy in alfalfa meal, feather meal, and poultry by-product meal by various methods. Poult. Sci. 69, 1544-1552.
Hassanzadeh Seyedi A. and Hosseinkhani A. (2014). Evaluation corn gluten meal nutritive value for broiler chicks. Int. J. Adv. Biol. Biom. Res. 2(9), 2609-2615.
Hill F.W. and Anderson D.L. (1958). Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 65, 587-603.
Janmohammadi H., Taghizadeh A., Moghadam G.A., Pirani N., Ostan S., Gheshlog M. and Sahreai M. (2009). Nutritive value of poultry by-product meal from Iran in broiler feeding. Pp. 23-33 in Proc. British Soc. Anim. Sci., Southport, United Kingdom.
Jones J.D. and Sibbald I.R. (1979). The true metabolizable values for poultry of fractions of rapeseed (Brassica napus cv. Tower). Poult. Sci. 58, 385-391.
Kalvandi O., Janmohammadi H. Ghorbanali S. (2011). Determination of protein quality and true metabolizable energy of high oil poultry by-product meal. African J. Agric. Res. 6, 1983-1989.
Karr-Lilienthal L.K., Grieshop C.M., Merchen N.R., Mahan D.C. and Fahey Jr G.C. (2004). Chemical composition and protein quality comparisons of soybeansand soybean meals from five leading soybean-producing countries. J. Agric. Food Chem. 52, 6193-6199.
Karr-Lilienthal L.K., Kadzere C.T., Grishop C.M. and Fahey Jr G.C. (2005). Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livest. Prod. Sci. 97, 1-12.
Kato R.K., Bertechini A.G., Fassani E.J., Gonçalves de Brito J.A. and Castro S.D.F. (2011). Metabolizable energy of corn hybrids for broiler chickens at different ages. Ciênc. Agrotec. 35(6), 1218-1226.
Kim E.J., Utterback P.L. and Parsons C.M. (2011). Development of a precision-fed ileal amino acid digestibility assay using 3-week-old broiler chicks. Poult. Sci. 90, 396-401.
Lee J., Nam D.S. and Kong C. (2016). Variability in nutrient composition of cereal grains from different origins. Springer Plus. 5, 419-425.
Macleod M.G. (2002). Energy utilization: measurement and prediction. Pp. 191-217 in Poultry Feedstuffs: Supply, Composition and Nutritive Value. J.M. McNab and K.N. Boorman, Eds. CABI, Wallingford, United Kingdom.
March B.E., Smith T. and El-Lakany S. (1973). Variation in estimates of the metabolizable energy of rapeseed meal determined with chickens of different ages. Poult. Sci. 52, 614-618.
March B.E., Smith T. and Sadiq M. (1975). Factors affecting estimates of metabolizable energy value of rapeseed meal for poultry. Poult. Sci. 54, 538-546.
Moran E.T.J. (1985). Digestion and absorption of carbohydrates in fowl and events through perinatal development. J. Nutr. 115, 665-671.
Nadeem M.A., Gilani A.H., Khan A.G. and Mahr-Un-Nisa M. (2005). True ME value of poultry feedstuffs in pakestan. Int. J. Agric. Biol. 7(6), 990-994.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, D.C., USA.
Ravindran V., Abdollahi M.R. and Bootwalla S.M. (2014). Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poult. Sci. 93, 2567-2577.
Robbins D.H. and Firman J.D. (2006). Evaluation of the metabolizable energy of poultry by- product meal for chickens and turkeys by various methods. Int. J. Poult. Sci. 5, 753-758.
Rostagno H.S., Albino L.F.T., Donzele J.L., Gomes P.C., Oliveira R.F., Lopes D.C., Ferreira A.S., Toledo Barreto S.L. and Euclides R.F. (2011). Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements. Universidade Federal de Viçosa, Viçosa, Minas Gerais.
Rotter B.A., Marquardt R.R., Guenter W., Campbell L.D. and Crow G.U. (1990). Estimation of nitrogen-corrected true metabolizable energy of two different barley samples with and without enzyme supplementation over different excreta collection times. Poult. Sci. 69, 1816-1817.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Seth P.C.C. and Clandinin D.R. (1973). Metabolizable energy value and composition of rapeseed meal and fractions derived therefrom by air classification. Br. Poult. Sci. 14, 499-505.
Shires A., Robblee A.R., Hardin R.T. and Clandinin D.R. (1980). Effect of the age of chickens on the true metabolizable energy values of feed ingredients. Poult. Sci. 59, 396-403.
Sibbald I.R. (1976). A bioassay for true metabolizable energy in feedingstuffs. Poult. Sci. 55, 303-308.
Sibbald I.R. (1979a). Passage of feed through the adult rooster. Poult. Sci. 58, 446-459.
Sibbald I.R. (1979b). A bioassay for available amino acids and true metabolizable energy in feedingstuffs. Poult. Sci. 58, 668-673.
Sibbald I.R. and Kramer J.K.G. (1980). The effect of the basal diet on the utilization of fat as a source of true metabolizable energy, lipid and fatty acids. Poult. Sci. 59, 316-324.
Sibbald I.R. (1982). Measurement of bioavailable energy in poultry feedingstuffs: A review. Canadian J. Anim. Sci. 62, 983-1048.
Sibbald I.R. (1986). The TME System of Feed Evaluation: Methodology, Feed Composition Data and Bibliography. Animal Research Centre, Ottawa, Ontario, Canada.
Stefanello C., Vieiraa S.L., Riosa H.V., Simõesa C.T. and Sorbara J.O.B. (2016). Energy and nutrient utilisation of broilers fed soybean meal from two different Brazilian production areas with an exogenous protease. Anim. Feed Sci. Technol. 221, 267-273.
Sub S.D. (1988). Composition of Korean Feedstuffs.Han Lim Journal Publishing Co., Seoul, South Korea.
Yaghobfar A. (2013). Effect of bioassay and age on amino acid digestibility and metabolizable energy of soybean, sunflower and canola meal. Iranian J. Appl. Anim. Sci. 3(2), 249-261.
Zarei A., Mohammadi M. and Hemmati B. (2014). Metabolizable energy and chemical composition of poultry by- product meal. Iranian J. Appl. Anim. Sci. 4(4), 849-853.