The Effect of Bovine Lactoferrin and Probiotic on Performance and Health Status of Ghezel Lambs in Preweaning Phase
Subject Areas : CamelM. Mallaki 1 , ع. حسینخانی 2 , A. Taghizadeh 3 , G. Hamidian 4 , H. Paya 5
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - گروه علوم دامی - دانشکده کشاورزی - دانشگاه تبریز
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Basic Science, Faculty of Veterinary, University of Tabriz, Tabriz, Iran
5 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Keywords: immune system, Probiotic, lactoferrin, Antibacterial Properties, ruminant's neonate,
Abstract :
Due to concern about antibacterial substances in animal nutrition; bioactive components such as lactoferrin and probiotic with health effects, can be used in some species that are more sensitive to pathogens. Thirty six suckling male Ghezel lambs in a completely randomized design employing a 2 × 3 factorial arrangement were used to study the effects of bovine lactoferrin (BLF) and probiotic on performance, blood and immune system parameters in the pre-weaning phase. Experimental treatments were as follow: 1) control (without BLF and probiotic), 2) 1 g/d probiotic, 3) 0.25 g/d BLF, 4) 0.25 g/d BLF and 1 g/d probiotic, 5) 0.5 g/d BLF, 6) 0.5 g/d BLF and 1 g/d probiotic. Final body weight, weight gain, feed intake and feed efficiency (FE) were significantly affected by the treatments (p <0.05). Diet supplementation with BLF plus probiotic improved performance parameters more than diets without probiotics; however there is no difference between BLF levels. No significant differences was found among health status indices except medicated days (p <0.05). Moreover, no differences were observed in erythrocyte, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC). Conversly hemoglobin, white blood cells (WBC), segmented neutrophil and lymphocyte percentag were significantly affected by the treatments (p <0.05). Additionally experimental treatments significantly changed plasma concentrations of Fe, non-esterified fatty acids (NEFA) and glucose (p <0.05). According to results of present experiment, it seems that BLF plus probiotic can have synergisc effect on performance and heath status of Ghezel lamb breed in preweaning phase.
Antunovic Z., Speranda M., Liker B., Seric V., Sencic D., Domaćinović M. and Šperandat T. (2005). Influence of feeding the probiotic Pioneer PDFM® to growing lambs on performances and blood composition. Acta Vet. 55(4), 287-300.
AOAC. (2005). Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Arowolo M.A. and He J. (2018). Use of probiotics and botanical extracts to improve ruminant production in the tropics. Anim. Nutr. 4, 241-249.
Bergman E. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70(2), 567-590.
Bezault J., Bhimani R., Wiprovnick J. and Furmanski P. (1994). Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice. Cancer Res. 54(9), 2310-2312.
Chiofalo V., Liotta L. and Chiofalo B. (2004). Effects of the administration of Lactobacilli on body growth and on the metabolic profile in growing Maltese goat kids. Reprod. Nutr. Dev. 44(5), 449-457.
Connelly R. and Erickson P. (2016). Lactoferrin supplementation of the neonatal calf has no impact on immunoglobulin G absorption and intestinal development in the first days of life. J. Anim. Sci. 94(1), 196-200.
Cowles K., White R., Whitehouse N. and Erickson P. (2006). Growth characteristics of calves fed an intensified milk replacer regimen with additional lactoferrin. J. Dairy Sci. 89(12), 4835-4845.
Cristaldi L., McDowell L., Buergelt C., Davis P., Wilkinson N. and Martin F. (2005). Tolerance of inorganic selenium in wether sheep. Small Rumin. Res. 56(1), 205-213.
Cruywagen C., Jordaan I. and Venter L. (1996). Effect of Lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J. Dairy Sci. 79(3), 483-486.
Davidson L.A. and Lonnerdal B. (1989). Fe-saturation and proteolysis of human lactoferrin: effect on brush-border receptor-mediated uptake of Fe and Mn. American J. Physiol. Gastrointest. Liver Physiol. 257(6), 930-934.
Davis P., McDowell L., Wilkinson N., Buergelt C., Van Alstyne R., Weldon R., Marshall T. and Matsuda-Fugisaki E. (2008). Comparative effects of various dietary levels of Se as sodium selenite or Se yeast on blood, wool, and tissue Se concentrations of wether sheep. Small Rumin. Res. 74(1), 149-158.
De Bortoli N., Leonardi G., Ciancia E., Merlo A., Bellini M., Costa F., Mumolo M.G., Ricchiuti A., Cristiani F. and Santi S. (2007). Helicobacter pylori eradication: A randomized prospective study of triple therapy versus triple therapy plus lactoferrin and probiotics. American J. Gastroenterol. 102(5), 951-956.
Debbabi H., Dubarry M., Rautureau M. and Tome D. (1998). Bovine lactoferrin induces both mucosal and systemic immune response in mice. J. Dairy Res. 65(2), 283-293.
De Vrese M. and Schrezenmeir J. (2002). Probiotics and non-intestinal infectious conditions. British J. Nutr. 88(1), 59-66.
Dionysius D.A., Grieve P.A. and Milne J.M. (1993). Forms of lactoferrin: Their antibacterial effect on enterotoxigenic Escherichia coli. J. Dairy Sci. 76(9), 2597-2606.
Dwyer C. and Morgan C. (2006). Maintenance of body temperature in the neonatal lamb: Effects of breed, birth weight, and litter size. J. Anim. Sci. 84(5), 1093-1101.
Ekiz C., Agaoglu L., Karakas Z., Gurel N. and Yalcin I. (2005). The effect of iron deficiency anemia on the function of the immune system. Hematol. J. 5(7), 579-583.
Fransson G.B., Thorén-Tolling K., Jones B., Hambraeus L. and Lönnerdal B. (1983). Absorption of lactoferrin-iron in suckling pigs. Nutr. Res. 3(3), 373-384.
Frizzo L., Soto L., Zbrun M., Bertozzi E., Sequeira G., Armesto R.R. and Rosmini M. (2010). Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Technol. 157(3), 159-167.
Gibson G.R. and Fuller R. (2000). Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J. Nutr. 130(2), 391-395.
Gokce E., Atakisi O., Kirmizigul A.H., Unver A. and Erdogan H.M. (2014). Passive immunity in lambs: Serum lactoferrin concentrations as a predictor of IgG concentration and its relation to health status from birth to 12 weeks of life. Small Rumin. Res. 116(2), 219-228.
González-Chávez S.A., Arévalo-Gallegos S. and Rascón-Cruz Q. (2009). Lactoferrin: Structure, function and applications. Int. J. Antimicrob. Agents. 33(4), 301-308.
Hillal H., El-Sayaad G. and Abdella M. (2011). Effect of growth promoters (probiotics) supplementation on performance, rumen activity and some blood constituents in growing lambs. Arch. Anim. Breed. 54(6), 607-617.
Jang Y., Oh H., Piao L., Choi H., Yun J. and Kim Y. (2009). Evaluation of probiotics as an alternative to antibiotic on growth performance, nutrient digestibility, occurrence of diarrhea and immune response in weaned pigs. J. Anim. Sci. Technol. 51(1), 25-32.
Jones M.L. and Allison R.W. (2007). Evaluation of the ruminant complete blood cell count. Vet. Clin. North Am. Food Anim. Pract. 23(3), 377-402.
Joslin R., Erickson P., Santoro H., Whitehouse N., Schwab C. and Rejman J. (2002). Lactoferrin supplementation to dairy Ccalves 1, 2. J. Dairy Sci. 85(5), 1237-1242.
Kieckens E., Rybarczyk J., Cox E. and Vanrompay D. (2018). Antibacterial and immunomodulatory activities of bovine lactoferrin against Escherichia coli O157: H7 infections in cattle. BioMetals. 31(3), 321-330.
Kume S.I. and Tanabe S. (1993). Effect of parity on colostral mineral concentrations of Holstein cows and value of colostrum as a mineral source for newborn calves. J. Dairy Sci. 76(6), 1654-1660.
Kume S.I. and Tanabe S. (1996). Effect of supplemental lactoferrin with ferrous iron on iron status of newborn calves. J. Dairy Sci. 79(3), 459-464.
Legrand D. (2016). Overview of lactoferrin as a natural immune modulator. J. Pediatr. 173, 10-15.
Lema M., Williams L. and Rao D. (2001). Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157: H7 in lambs by feeding microbial feed supplement. Small Rumin. Res. 39(1), 31-39.
Levay P.F. and Viljoen M. (1995). Lactoferrin: A general review. Haematologica. 80(3), 252-267.
Littell R.C., Milliken G.A., Stroup W.W. and Wolfinger R.D. (1996). SAS System for Mixed Models. Statistical Analysis Systems Institute Inc., Cary, NC., USA.
Miyauchi H., Hashimoto S.I., Nakajima M., Shinoda I., Fukuwatari Y. and Hayasawa H. (1998). Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: Identification of its active domain. Cell. Immunol. 187(1), 34-37.
Muri C., Schottstedt T., Hammon H., Meyer E. and Blum J. (2005). Hematological, metabolic, and endocrine effects of feeding vitamin A and lactoferrin in neonatal calves. J. Dairy Sci. 88(3), 1062-1077.
Nagasako Y., Saito H., Tamura Y., Shimamura S. and Tomita M. (1993). Iron-binding properties of bovine lactoferrin in iron-rich solution. J. Dairy Sci. 76(7), 1876-1881.
NRC. (2007). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, D.C., USA.
Prgomet C., Prenner M., Schwarz F. and Pfaffl M. (2007). Effect of lactoferrin on selected immune system parameters and the gastrointestinal morphology in growing calves. J. Anim. Physiol. Anim. Nutr. 91(3), 109-119.
Qian Z.Y., Jollès P., Migliore-Samour D. and Fiat A.M. (1995). Isolation and characterization of sheep lactoferrin, an inhibitor of platelet aggregation and comparison with human lactoferrin. Biochim. Biophys. Acta. 1243(1), 25-32.
Refshauge G., Brien F., Hinch G. and van de Ven R. (2016). Neonatal lamb mortality: Factors associated with the death of Australian lambs. Anim. Prod. Sci. 56(4), 726-735.
Rejman J., Oliver S., Muenchen R. and Turner J. (1992). Proliferation of the MAC-T bovine mammary epithelial cell line in the presence of mammary secretion whey proteins. Cell Biol. Int. Rep. 16(10), 993-1001.
Reznikov E. (2014). Lactoferrin in neonatal development: Effects on intestinal structure and intestinal function and immune response in a piglet model of systemic Staphylococcus aureus infection. Ph D. Thesis. University of Illinois at Urbana-Champaign, Champaign, Illinois.
Robblee E., Erickson P.S., Whitehouse N.L., McLaughlin A., Schwab C.G., Rejman J. and Rompala R. (2003). Supplemental lactoferrin improves health and growth of Holstein calves during the preweaning phase1, 2. J. Dairy Sci. 86(4), 1458-1464.
Rosa L., Cutone A., Lepanto M., Paesano R. and Valenti P. (2017). Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Sci. 18(9), 1985-1990.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Shin K., Yamauchi K., Teraguchi S., Hayasawa H., Tomita M., Otsuka Y. and Yamazaki S. (1998). Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157: H7. Lett. Appl. Microbiol. 26(6), 407-411.
Sobczuk-Szul M., Wielgosz-Groth Z., Wronski M. and Rzemieniewski A. (2013). Changes in the bioactive protein concentrations in the bovine colostrum of Jersey and Polish Holstein-Friesian cows. Turkish J. Vet. Anim. Sci. 37(1), 43-49.
Superti F., Ammendolia M., Valenti P. and Seganti L. (1997). Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol. 186(2), 83-91.
Teraguchi S., Ozawa K., Yasuda S., Shin K., Fukuwatari Y. and Shimamura S. (1994). The bacteriostatic effects of orally administered bovine lactoferrin on intestinal Enterobacteriaceae of SPF mice fed bovine milk. Biosci. Biotechnol. Biochem. 58(3), 482-487.
Tetens I. (2012). EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on Bovine Lactoferrin: EFSA-Q-2010-01269. European Food Safety Authority, Parma, Italy.
Thomas A.D. (2017). Supplementation of two novel probiotics in the diet of lactating dairy cows. MS Thesis. Iowa State University, Ames, Iowa.
Tsuji S., Hirata Y., Mukai F. and Ohtagaki S. (1990). Comparison of lactoferrin content in colostrum between different cattle breeds. J. Dairy Sci. 73(1), 125-128.
Turkson P. (2003). Lamb and kid mortality in village flocks in the coastal savanna zone of Ghana. Trop. Anim. Health Prod. 35(6), 477-490.
Tzipori S., Sherwood D., Angus K., Campbell I. and Gordon M. (1981). Diarrhea in lambs: experimental infections with enterotoxigenic Escherichia coli, rotavirus, and Cryptosporidium sp. Infect. Immun. 33(2), 401-406.
Vosooghi-Poostindoz V., Foroughi A., Delkhoroshan A., Ghaffari M., Vakili R. and Soleimani A. (2014). Effects of different levels of protein with or without probiotics on growth performance and blood metabolite responses during pre-and post-weaning phases in male Kurdi lambs. Small Rumin. Res. 117(1), 1-9.
Wakabayashi H., Yamauchi K. and Abe F. (2018). Quality control of commercial bovine lactoferrin. BioMetals. 31(3), 313-319.
Weinberg E.D. and Des C.P. (2007). Antibiotic properties and applications of lactoferrin. Curr. Pharm. Des. 13(8), 801-811.
Yekta M.A., Cox E., Goddeeris B. and Vanrompay D. (2011). Reduction of Escherichia coli O157:H7 excretion in sheep by oral lactoferrin administration. Vet. Microbiol. 150(3), 373-378.
Yeoman C.J. and White B.A. (2014). Gastrointestinal tract microbiota and probiotics in production animals. Annu. Rev. Anim. Biosci. 2(1), 469-486.
Zhang P., Sawicki V., Lewis A., Hanson L., Nuijens J. and Neville M. (2001). Human lactoferrin in the milk of transgenic mice increases intestinal growth in ten-day-old suckling neonates. Adv. Exp. Med. Biol. 501, 107-114.