Association between MTNR1A and CYP19 Genes Polymorphisms and Economic Traits in Kurdi Sheep
Subject Areas : Camelز. داوری ورانلو 1 , س. حسنی 2 , م. آهنی آذری 3 , ف. صمدی 4 , س. زکیزاده 5 , ع.ر. خان احمدی 6
1 - Department of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Iran
2 - Department of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Iran
3 - Department of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Iran
4 - Department of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Iran
5 - Department of Animal Science and Veterinary, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
6 - Department of Animal Science, Faculty of Agricultural and Natural Resources, Gonbad University, Gonbad, Iran
Keywords: polymorphism, reproductive traits, growth traits, <, i>, CYP19<, /i>, gene, <, i>, MTNR1A<, /i>, gene,
Abstract :
The ovine melatonin receptor 1A (MTNR1A) and aromatase (CYP19) genes were structurally characterized and the association between their variants and reproductive and growth traits was studied in Kurdi sheep at Kurdi sheep breeding station located in Shirvan, Iran. The genomic DNA was extracted by guanidine thiocyanate-silica gel method. Polymerase chain reaction was carried out to amplify 824 bp fragment of exon 2 of MTNR1A and 140 bp fragment of the exon 3 of the ovine CYP19 genes. The PCR products were digested with restriction endonucleases RsaI for MTNR1A and BstMBI for CYP19 genes and checked by polyacrylamide gel electrophoresis for the presence of restriction sites. Two alleles were found for all the loci investigated, which were named as A and B for CYP19, and R and r for MTRN1A. Allelic frequencies for MTRN1A were 0.49 and 0.51 for R and r alleles, while in the case of CYP19 gene, frequencies were 0.475 and 0.525for A and B alleles, respectively. Association analysis did not show any significant relations between MTNR1A gene polymorphisms and litter size (LS), age at first lambing (AFL) and lambing interval (LI). Moreover, CYP19 gene polymorphism did not affect birth weight (BW), weaning weight (WW), 6, 9 and 12 months (YW) body weights, age at first lambing (AFL) and lambing interval (LI).
Chu M., Cheng D., Liu1 W., Fang L. and Ye S. (2006). Association between melatonin receptor 1A gene and expression of reproductive seasonality in sheep. Asian-Australas J. Anim. Sci. 19, 1079-1084.
Chu M.X., Ji C.L. and Chen G.H. (2003). Association between PCR-RFLP of melatonin receptor 1a gene and high prolificacy in Small Tail Han sheep. Asian-Australas J. Anim. Sci. 16, 1701-1704.
Dubocovich M.L., Yun K., Al Ghoul W.M., Benloucif S. and Masana M.I. (1998). Selective MT2 melatonin receptor antagonists block melatonin mediated phase advances of circadian rhythms. Faseb. J. 12, 1211-1220.
Goldammer T., Brunner R.M., Vanselow J., Zsolnai A., Fürbass R. and Schwerin M. (1999). Assignment of the bovine aromatase encoding gene CYP19 to 10q26 in goat and 7q24-q31 in sheep. Cytogenet. Cell. Genet. 85, 258-259.
Heine P.A., Taylor J.A., Iwamoto G.A., Lubahn D.B. and Cooke P.S. (2000). Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl. Acad. Sci. USA. 97, 12729-12734.
Hristova D., Georgieva S., Yablanski T., Tanchev S., Slavov R. and Bonev G. (2012). Genetic polymorphism of the melatonin receptor MT1 gene in four Bulgarian sheep breeds. J. Agric. Sci. Technol. 4, 187-192.
Jaworek J., Brzozowski T. and Konturek S.J. (2005). Melatonin as an organoprotector in the stomach and the pancreas. J. Pineal. Res. 38, 73-83.
Jones M.E., Thorburn A.W., Britt K.L., Hewitt K.N., Wreford N.G., Proietto J., Oz O.K., Leury B.J., Robertson K.M. and Yao S. (2000). Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl. Acad. Sci. 97, 12735-12740.
Lôbo A.M., Lôbo R.N. and Paiva S.R. (2009). Aromatase gene and its effects on growth, reproductive and maternal ability traits in a multi breed sheep population from Brazil. Genet. Mol. Biol. 32, 484-490.
Martínez-Campa C., González A., Mediavilla M.D., Alonso-González C., Alvarez-García V., Sánchez-Barceló E.J. and Cos S. (2009). Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br. J. Cancer. 101, 1613-1619.
Martinez-Royo A., Lahoz B., Alabart J.L., Folch J. and Calvo J.H. (2012). Characterisation of the melatonin receptor 1A (MTNR1A) gene in the Rasa Aragonesa sheep breed: association with reproductive seasonality. Anim. Reprod. Sci. 133, 169-175.
Mateescu R., Lunsford A. and Thonney M. (2009). Association between melatonin receptor 1A gene polymorphism and reproductive performance in Dorset ewes. J. Anim. Sci. 87, 2485-2488.
Messer L.A., Wang L., Tuggle C.K., Yerle M., Chardon P., Pomp D., Womack J.E., Barendse W., Crawford A.M., Notter D.R. and Rothschild M.F. (1997). Mapping of the melatonin receptor 1a (MTNR1A) gene in pigs, sheep and cattle. Mamm.Gen. 8, 368-370.
Mora N.H., Silva S.C., Tanamati F., Schuroff G.P., Macedo F.A. and Gasparino E. (2014). Polymorphism C242T in the Cyp19 gene in meat sheep. Brazilian J. Biol. 76, 205-208.
Moradi N., RahimiMianji G., Nazifi N. and Nourbakhsh A. (2014). Polymorphism of the melatonin receptor 1A gene and its association with litter size in Zel and Naeinisheep breeds. Iranian J. Appl. Anim. Sci. 4, 79-87.
Nelson D.R., Kamataki T., Waxman D.J., Guengerich F.P., Estab-rook R.W., Feyereisen R., Gonzalez F.J., Coon M.J., Gunsalus I.C., Gotoh K. and Nebert D.W. (1993). The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA. Cell. Biol. 12, 1-51.
Notter D.R., Cockett N.E. and Hadfield T.S. (2003). Evaluation of melatonin receptor 1a as a candidate gene influencing reproduction in an autumn-lambing sheep flock. J. Anim. Sci. 81, 912-917.
Payen E., Saidi-Mehtar N., Pailhoux E. and Cotinot C. (1995). Sheep gene mapping: assignment of ALDOB, CYP19, WT and SOX2 by somatic cell hybrid analysis. Anim. Genet. 26, 331-333.
Reppert S.M., Weaver D.R. and Ebisawa T. (1994). Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 13, 1177-1185.
SAS Institute. (2000). SAS®/STAT Software, Release 8.1. SAS Institute, Inc., Cary, NC. USA.
Şeker İ., Özmen Ö., Çinarkul B. and Ertugrul O. (2011). Polymorphism in melatonin receptor 1A (MTRN1A) gene in chios, White Karaman and Awassi sheep breeds. Kafkas. Univ. Vet. Fak. Derg. 17, 865-868.
Simpson E., Rubin G., Clyne C., Robertson K., O’Donnell L., Jones M. and Davis S. (2000). The role of local estrogen biosynthesis in males and females. Trends. Endocrinol. Metab. 11, 184-188.
Vanselow J., Kühn C., Fürbass R. and Schwerin M. (1999). Three PCR/RFLPs identified in the promoter region 1.1 of the bovine aromatase gene (CYP19). Anim. Genet. 30, 232-233.
Weaver D.R., Liu C. and Reppert S.M. (1996). Nature’s knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol. Endocrinol. 10, 1478-1487.
Yeh F.C., Yang R.C. and Boyle T. (1999). POPGENE: Microsoft Windows Based Freeware for Population Genetic Analysis. Molecular Biology and Technology Center, Unversity of Alberta. Canada.