Survey on Carrier State of Sheep in Chlamydia pecorum Infection
Subject Areas : Camelن. موری بختیاری 1 , س. براتی 2 , س. گودرزی 3
1 - Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 - Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: Sheep, polymerase chain reaction, <i>Chlamydia pecorum</i>,
Abstract :
Over the last 40 years, evidence has accumulated to suggest the ubiquitous presence of infections with intracellular bacteria of the genus Chlamydia in different livestock species. Different methods to clinical specimens substantiated such widespread, but mostly clinically unapparent, presumably low-level infections. In this initial epidemiological study, we addressed the question of chlamydial infection of conjunctiva and genital tract in apparently healthy sheep. In this research, 33 sheep and 20 goats which had previously been exposed to the possibility of sexual transmission of Chlamydia, examined by conjunctiva (53 swabs) and vaginal swab (53 swabs). After DNA extraction by boiling method, presence of Chlamydia pecorum was investigated by nested PCR. Chlamydia pecorum strain W73 was used as positive control. In this research, 10 infected swab samples (from 106 swab samples) contain of 7 vaginal (70%) and 3 conjunctival swabs (30%) were detected. All positive vaginal swabs and 3 positive conjunctival swabs were related to aborted and adult animals, respectively. According to higher percentage of Chlamydia pecorum infection in apparently healthy sheep,carrier state in sheep is more probable than goats. Vaginal secretion is more important route of chlamydial infection dissemination towards conjunctival secretion. Because of high risk of chlamydial infection in cows, attention to role of sheep in disease epidemiology was recommended.
Andersen A.A.(1991). Serotyping of Chlamydia psittaci isolates using serovar- specific monoclonal antibodies with the microimmunofluorescence test. J. Clin. Microbiol. 29, 707-711.
Askari N., Mohammadabadi M.R. and Baghizadeh A. (2011). ISSR markers for assessing DNA polymorphism and genetic characterization of cattle, goat and sheep populations. Iranian J. Biotechnol. 9(3), 222-229.
Balamurugan V., Sen A., Venkatesan G., Rajak K.K., Bhanuprakash V. and Singh R.K. (2012). Study on passive immunity: time of vaccination in kids born to goats vaccinated against Peste des petits ruminants. Virol. Sin. 27, 228-233.
Buchanan R., Mertins S. and Wilson H. (2013). Oral antigen exposure in extreme early life in lambs influences the magnitude of the immune response which can be generated in later life. BMC Vet. Res. 9, 160.
Clarkson M.J. and Philips H.L. (1997). Isolation of faecal Chlamydia from sheep in Britain and their characterization by cultural properties. Vet. J. 153, 307-310.
Cox R.L., Kuo C.C., Grayston J.T. and Campbell L.A. (1988). Deoxyribonucleic acid relatedness of Chlamydia spp. strain TWAR to Chlamydia trachomatis and Chlamydia psittaci. Int. J. Syst. Bacteriol. 38, 265-268.
DeGraves F.J., Gao D., Hehnen H.R., Schlapp T. and Kaltenboeck B. (2003). Quantitative detection of Chlamydia psittaci and Chlamydia pecorum by high-sensitivity real-time PCR reveals high prevalence of vaginal infection in cattle. J. Clin. Microbiol. 41, 1726-1729.
Entrican G., Wheelhouse N., Wattegedera S.R. and Longbottom D. (2012). New challenges for vaccination to prevent chlamydial abortion in sheep. Comp. Immunol. Microbiol. Infect. Dis. 35, 271-276.
Ghorbanpoor M., Goraninejad S. and Heydari R. (2007). Serological study on enzootic abortion of ewes in Ahvaz, Iran. J. Anim. Vet. Advan. 6(10), 1194-1196.
Ghorbanpoor M., Moori Bakhtiari N., Mayahi M. and Moridveisi H. (2015). Detection of Chlamydophila psittaci from pigeons by polymerase chain reaction in Ahvaz. Iranian J. Microbiol. 7(1), 18-22.
Godin A.C., Bjorkman C., Englund S., Johansson K.E., Niskanen R. and Alenius S. (2008). Investigation of Chlamydophila spp. in dairy cows with reproductive disorders. Acta Vet. Scandinavica. 50, 39.
Greco G., Corrente M., Buonavoglia D., Campanile G., Di Palo R., Martella V., Bellacicco A.L., D'Abramo M. and Buonavoglia C. (2008). Epizootic abortion related to infections by Chlamydophila abortus and Chlamydophila pecorum in water buffalo (Bubalus bubalis). Theriogenology. 69, 1061-1069.
Hewinson R.G., Rankin S.E.S., Bevan B.J., Field M. and Woodward M.J. (1991). Detectionof Chlamydia psittaci from avian field samples using the PCR. Vet. Rec. 199, 129-130.
Jaeger J., Liebler-Tenorio E., Kirschvink N., Sachse K. and Reinhold P. (2007). A clinically silent respiratory infection with Chlamydophila spp. in calves is associated with airway obstruction and pulmonary inflammation. Vet. Res. 38, 711-728.
Jee J., Degraves F.J., Kim T. and Kaltenboeck B. (2004). High prevalence of natural Chlamydophila species infection in calves. J. Clin. Microbiol. 42, 5664-5672.
Jelocnik M., Frentiu D.F., Timms P. and Polkinghorne A. (2013). Multilocus sequence analysis provides insights into molecular epidemiology of Chlamydia pecorum infections in Australian sheep, cattle, and koalas. J. Clin. Microbiol. 51(8), 2625-2631.
Kaltenboeck B., Heinen E., Schneider R., Wittenbrink M.M. and Schmeer N. (2009). OmpA and antigenic diversity of bovine Chlamydophila pecorum strains. Vet. Microbiol. 135, 175-180.
Kaltenboeck B., Hehnen H.R. and Vaglenov A. (2005). Bovine Chlamydophila spp. infection: Do we underestimate the impact on fertility? Vet. Res. Commun. 29, 1-15.
Kaltenbock B., Schmeer N. and Schneider R. (1997). Evidence for numerous OMP1 alleles of Porcine Chlamydia trachomatis and novel chlamydial species Obtained by PCR. J. Clin. Microbiol. 35(7), 1835-1841.
Kauffold J., Henning K., Bachmann R., Hotzel H. and Melzer F. (2007). The prevalence of Chlamydiae of bulls from six bull studs in Germany. Anim. Reprod. Sci. 102, 111-121.
Kollipara A., Polkinghorne A., Wan C., Kanyoka P., Hanger J., Loader J., Callaghan J., Bell A., Ellis W., Fitzgibbon S., Melzer A., Beagley K. and Timms P. (2013). Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. Vet. Microbiol. 167, 513-522.
Lenzko H., Moog U., Henning K., Lederbach R., Diller R., Menge C., Sachse K. and Sprague L. (2011). High frequency of chlamydial co-infections in clinically healthy sheep flocks. BMC Vet. Res. 7, 29-35.
Longbottom D., Livingstone M., Maley S., van der Zon A., Rocchi M., Wilson K., Wheelhouse N., Dagleish M., Aitchison K., Wattegedera S., Nath M., Entrican G. and Buxton D. (2013). Intranasal infection with Chlamydia abortus induces dose-dependent latency and abortion in sheep. PLoS One. 8, e57950.
Marsh J., Kollipara A., Timms P. and Polkinghorne A. (2011). Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus). BMC Microbiol. 11, 77-85.
Yousef Mohamad K.Y. and Rodolakis A. (2010). Recent advances in the understanding of Chlamydophila pecorum infections, sixteen years after it was named as the fourth species of the Chlamydiaceae family. Vet. Res. 41, 27-35.
Yousef Mohamad K.Y., Roche S.M., Myers G., Bavoil P.M., Laroucau K., Magnino S., Laurent S., Rasschaert D. and Rodolakis A. (2008). Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains. Infect. Genet. Evol. 8, 764-771.
Polkinghorne A., Borel N., Becker A., Lu Z.H., Zimmermann D.R., Brugnera E., Pospischil A. and Vaughan L. (2009). Molecular evidence for chlamydial infections in the eyes of sheep. Vet. Microbiol. 135, 142-146.
Rekiki A., Bouakane A., Hammami S., El Idrissi A.H., Bernard F. and Rodolakis A. (2004). Efficacy of live Chlamydophila abortus vaccine 1B in protecting mice placentas and foetuses against strains of Chlamydophila pecorum isolated from cases of abortion. Vet. Microbiol. 99, 295-299.
Sait M., Livingstone M., Clark E.M., Wheelhouse N., Spalding L., Markey B., Magnino S., Lainson F.A., Myers G.S. and Longbottom D. (2014). Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes. BMC Genom. 15, 23-31.
Sheehy N., Markey B., Gleeson M. and Quinn P.J. (1996). Differentiation of Chlamydia psittaci and Chlamydia pecorum strains by species-specific PCR. J. Clini. Microbiol. 34(12), 3175-3179.
Tanaka C., Miyazawa T., Watarai M. and Ishiguro N. (2005). Bacteriological survey of feces from feral pigeons in Japan. J. Vet. Med. Sci. 67, 951-953.
Walker E. (2013). Branhamella ovis and Chlamydia pecorum isolated from a case of conjunctivitis (with some polyarthritis) in lambs. Pp. 54-59 in Proc. 95th Dist. Vet. Conf. Armidale, Australia.
Watt B. (2011). Chlamydial infection in sheep. Pp. 109-113 in Proc. 92nd Dist. Vet. Conf. Dubbo, New South Wales, Australia.
Zamani P., Akhondi M. and Mohammadabadi M.R. (2015). Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in sheep. Small Rumin. Res. 132, 123-127.
Zandi E., Mohammadabadi M.R., Ezzatkhah M. and Esmailizadeh A.K. (2014). Typing of toxigenic isolates of Clostridium perfringens by multiplex PCR in ostrich. Iranian J. Appl. Anim. Sci. 4, 509-514.