Comparative Evaluation of Ascorbic Acid Supplementation in Tris-Egg Yolk Based Extender and Triladyl® Extender on Post-Thaw Kinematics Parameters of Sahiwal Bull Semen
Subject Areas : CamelH. Abdul Rauf 1 , R.E. Qadeer 2 , F.U. Hassan 3 , M. Tarique Tunio 4 , M.F. Bhutta 5 , S. Imran 6 *
1 - Department of Agricultural Science, Faculty of Science, Allama Iqbal Open University, Islamabad, Pakistan|Semen Production Unit, Qadirabad, Sahiwal, Punjab, Pakistan
2 - Semen Production Unit, Qadirabad, Sahiwal, Punjab, Pakistan
3 - Institute of Animal and Dairy Science, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
4 - Department of Agricultural Science, Faculty of Science, Allama Iqbal Open University, Islamabad, Pakistan
5 - Semen Production Unit, Qadirabad, Sahiwal, Punjab, Pakistan
6 - Institute of Animal and Dairy Science, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
Keywords: Ascorbic acid, antioxidants, bovine semen cryopreservation, Triladyl,
Abstract :
The current study was conducted to see the effects of ascorbic acid supplementation into tris-citric acid-glycerol-yolk (TCGY) extender and comparing it with Triladyl extender for bovine semen cryopreservation. Semen was collected from Sahiwal bulls for three weeks and each ejaculate (N=30) was divided into three aliquots. The first aliquot was extended using TCGY extender (control group), the 2nd aliquot was extended using TCGY supplemented with 2.1 mg/mL of ascorbic acid (AA group) and the 3rd aliquot of the same ejaculate was extended using Triladyl extender (TA group). Following the processing and freezing, thawed semen straws from each treatment were evaluated for sperm motility, viability, acrosome integrity and live/dead ratio. The average path velocity was the highest in TA group (77.99±2.99 µm/s) compared with other two groups (P<0.05). Similarly, values of total motility showed that TA group was superior to the other two groups (93.6±0.94% in TA versus 83.33±1.71% in control and 88.53±1.38% in AA group) (P<0.05). The amplitude of lateral head displacement (8.47±0.27 µm versus 5.00±0.22 µm and 4.74±0.13 µm), length of the average path (50.23±1.79 µm vs. 25.33±2.12 µm and 23.51±0.39 µm), length of the curvilinear path (85.01±3.03 µm vs. 38.89±1.48 µm and 38.65±0.77 µm), length of the straight-line path (37.28±1.33 µm vs. 19.39±0.84 µm and 20.42±0.29 µm) and track speed (130.93±5.33 µm/s vs. 89.13±3.47 µm/s and 92.11±1.88 µm/s) were significantly higher (P<0.05) in AA group as compared to TA and control group. Values for plasma membrane integrity (PMI), acrosome membrane integrity (AMI) and eosin were higher in AA and TA groups than in the control group (P<0.05). The addition of ascorbic acid in TCGY extender can serve as a better alternative to commercial extender for cryopreservation of semen.
Acharya U.R., Mishra M., Patro J. and Panda M.K. (2008). Effect of vitamins C and E on spermatogenesis in mice exposed to cadmium. Reprod. Toxicol. 25, 84-88.
Aisen E.G., Alvarez H.L., Venturino A. and Garde J.J. (2000). Effect of trehalose and EDTA on cryoprotective action of ram semen diluents. Theriogenology. 53, 1053-1061.
Aitken R.J., Buckingham D., Harkiss D., Fisher H., Paterson M. and Irvine D.S. (1996). The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Mol. Cell Endocrinol. 117, 83-93.
Aitken R.J., Paterson M., Fisher H., Buckingham D.W. and Vanduin M. (1995). Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J. Cell Sci. 108, 2017-2025.
Alvarez J.G. and Storey B.T. (2005). Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev. 42, 334-346.
Alvarez J.G., Touchstone J.C., Blasco L. and Storey B.T. (1987). Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. J. Androl. 8, 338-348.
Amidi F., Pazhohan A., Nashtaei M.S., Khodarahmian M. and Nekoonam S. (2016). The role of antioxidants in sperm freezing: A review. Cell Tissue Bank. 17, 745-756.
Amirat L., Anton M., Tainturier D., Chatagnon G., Battut I. and Courtens J.L. (2005). Modifications of bull spermatozoa induced by three extenders: Biociphos, low density lipoprotein and Triladyl, before, during and after freezing and thawing. Reproduction. 129(4), 535-543.
Amirat L., Tainturier D., Jeanneau L., Thorin C., Gerard O., Courtens J.L. and Anton M. (2004). Bull semen in vitro fertility after cryopreservation using egg yolk LDL: A comparison with optidyl, a commercial egg yolk extender. Theriogenology. 61, 895-907.
Ansari M.S., Rakha B.A., Ulah N., Andrabi S.M.H., Iqbal S., Khalid M. and Akhter S. (2010). Effect of exogenous glutathione in extender on the freezabilty of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa. Anim. Sci. Pap. Rep. 28, 235-244.
Ashrafi I., Kohram H. and Tayefi-Nasrabadi H. (2013). Antioxidant effects of bovine serum albumin on kinetics, microscopic and oxidative characters of cryopreserved bull spermatozoa. Spanish J. Agric. Res. 11, 695-701.
Attia Y.A., El-Naggar A.S., Abou-Shehema B.M. and Abdella A.A. (2019). Effect of Supplementation with trimethylglycine (betaine) and / or vitamins on semen quality, fertility, antioxidant status, DNA repair and welfare of roosters exposed to chronic heat stress. Animals. 9, 547-556.
Azawi O.I. and Hussein E.K. (2013). Effect of vitamins C or E supplementation to Tris diluent on the semen quality of Awassi rams preserved at 50 ˚C. Vet. Res. Forum. 4, 157-160.
Beconi M.T., Francia C.R. and Mora N.G. (1993). Effect of natural antioxidants in frozen bovine semen preservation. Theriogenology. 40, 841-851.
Bhosrekar M.R., Mokashi S.P., Purohit J.R., Gokhale S.B. and Mangurkar B.R. (1994). Comparative study on conventional and control (programmable) freezer on the quality of buffalo semen. Indian J. Anim. Sci. 64, 583-587.
Bilodeau J.F., Blanchette S., Cormier N. and Sirard M.A. (2002). Reactive oxygen species-mediated loss of bovine sperm mitochondrial membrane potential, and membrane lipidperoxidation. J. Androl. 21, 895-902.
Breininger E., Beorlegui N.B., O’Flaherty C. and Beconi M.T. (2005). Alpha- tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology. 63, 2126-2135.
Cocuzza M., Athayde K.S., Agarwal A., Sharma R., Pagani R., Lucon A.M. and Hallak J. (2008). Age-related increase of reactive oxygen species in neat semen in healthy fertile men. Urology. 71, 490-494.
Dalvit G.C., Cetica P.D. and Beconi M.T. (1998). Effect of alphatocopherol and ascorbic-acid on bovine in vitro fertilization. Theriogenology. 49, 619-627.
Dandekar P., Nadkarni G.D., Kulkarni V.S. and Punekar S. (2002). Lipid peroxidation and antioxidant enzymes in male infertility. J. Postgrad. Med. 48, 186-189.
De Ambrogi M., Ballester J., Saravia F., Caballero I., Johannisson A., Wallgren M. and Rodriguez-Martinez H. (2006). Effect of storage in short and long term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa. Int. J. Androl. 29, 543-552.
De Lamirande E., Jiang H., Zini A., Kodama H. and Gagnon C. (1997). Reactive oxygen species and sperm physiology. Rev. Reprod. 2, 48-54.
Doba T., Burton G.W. and Ingold K.U. (1985). Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta-Lipids Lipid Metabol. 835, 298-303.
Fejercakova A., Vaskova J., Baca M., Vasko L., Marcincak S., Hertelyova Z., Petrasova D. and Guothova L. (2013). Effect of dietary microbially produced gamma-linolenic acid and plant extracts on enzymatic and non-enzymatic antioxidants in various broiler chicken organs. J. Anim. Physiol. Anim. Nutr. 98, 860-866.
Foote R.H. (2002). The history of artificial insemination: Selected notes and notables. J. Anim. Sci. 80, 1-10.
Griveau J.F. and Lannou D.L. (1997). Reactive oxygen species and human spermatozoa: Physiology and pathology. Int. J. Androl. 20, 61-69.
Holt W. (2000). Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 62, 3-22.
Hu J.H., Li Q.W., Zan L.S., Jiang Z.L., An J.H., Wang L.Q. and Jia Y.H. (2010a). The cryoprotective effect of low density lipoproteins in extenders on bull spermatozoa following freezing-thawing. Anim. Reprod. Sci. 117, 11-17.
Hu J.H., Tian W.Q., Zhao X.L., Zan L.S., Wang H., Li Q.W. and Xin Y.P. (2010b). The cryoprotective effects of ascorbic acid supplementation on bovine semen quality. Anim. Reprod .Sci. 121, 72-77.
Iqbal S., Andrabi S.M.H., Riaz A., Durrani A.Z. and Ahmad N. (2016). Trehalose improves semen antioxidant enzymes activity, post-thaw quality, and fertility in Nili Ravi buffaloes (Bubalus bubalis). Theriogenology. 85, 954-959.
Jeyendran R.S., Van der Ven H.H., Perez-Pelaez M., Crabo B.G. and Zaneveld L.J.D. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 70, 219-228.
Kheradmand A., Babaei H. and Abshenas J. (2006). Comparative evaluation of the effect of antioxidants on the chilled-stored ram semen. Iranian J. Vet. Res. 7, 40-45.
Kumar S., Sahni K.L. and Mohan G. (1994). Effect of yolk, glycerol and sugars on post-thaw survival of buffalo spermatozoa in Tris dilutor. Indian J. Anim. Sci. 64, 362-364.
Leclerc P., De Lamirande E. and Gagnon C. (1997). Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radical Biol. Med. 22, 643-656.
Lewis B. and Aitken R.J. (2001). A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J. Androl. 22, 611-622.
Mostafa T., Anis T., Imam H., El-Nashar A. and Osman I. (2009). Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 41(2), 125-129.
Moussa M., Martinet V., Trimeche A., Tainturier D. and Anton M. (2002). Low density lipoproteins extracted from hen egg yolk by an easy method: Cryoprotective effect on frozen–thawed bull semen. Theriogenology. 57, 1695-1706.
Munsi M.N., Bhuiyan M.M.U., Majumder S. and Alam M.G.S. (2007). Effects of exogenous glutathion on the quality of chilled bull semen. Reprod. Domest. Anim. 42, 358-362.
Naz S., Umair M. and Iqbal S. (2018). Comparison of Tris egg yolk-based, Triladyl® and Optixell® extender on post-thaw quality, Kinematics and in vivo fertility of Nili Ravi buffalo (Bubalus bubalis) bull spermatozoa. Andrologia. 50(3), e13063.
Peña F.J., Rodríguez-Martinez H., Tapia J.A., Ferrusola C.O., Fernández L.G. and García B.M. (2009). Mitochondria in mammalian sperm physiology and pathology: A mini-review. Reprod. Domest. Anim. 44, 345-349.
Raad G., Mansour J., Ibrahim R., Azoury J., Azoury J., Mourad Y., Fakih C. and Azoury J. (2019). What are the effects of vitamin C on sperm functional properties during direct swim-up procedure? Zygote. 27, 69-77.
Raina V.S., Gupta A.K. and Raina K.S. (2002). Effect of antioxidant fortification on preservability of buffalo semen. Asian-australasian J. Anim. Sci. 15, 16-18.
Saint-Pierre D.H., Wang L. and Taché Y. (2002). Peripheral ghrelin selectively increases Fos expression in neuropeptide Y–synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci. Lett. 325, 47-51.
Sierens J., Hartley J.A., Campbell M.J., Leathem A.J. and Woodside J.V. (2002). In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm. Teratog. Carcinog. Mutagen. 22, 227-234.
Sinclair S. (2000). Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 5, 28-38.
Singh B. (1994). The effect of vitamin C addition in the diluents on the quality of refrigerated and deep-frozen Murrah buffalo bull semen. MS Thesis. Chaudhary Charan Singh Haryana Agricultural Univ., Hisar, India.
Singh F., Charles A.L., Schlagowski A.I., Bouitbir J., Bonifacio A. and Piquard F. (2015). Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim. Biophys. Acta-Mol. Cell Res. 1853, 1574-1585.
Soren S., Singh S.V. and Singh P. (2016). Influence of season on seminal antioxidant enzymes in Karan Fries bulls under tropical climatic conditions. Turkish J. Vet. Anim. Sci. 40, 797-802.
SPSS Inc. (2011). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc., USA.
Stolbov V.M. and Rimanova L.D. (1983). The effect of vitamins in the diluent on the quality of thawed bull semen. Anim. Breed. Abstr. 52, 6546-6554.
Therond P., Auger J., Legrand A. and Jouannet P. (1996). Alpha-tocopherol in human spermatozoa and seminal plasma: Relationships with motility, antioxidant enzymes and leukocytes. Mol. Hum. Reprod. 62, 739-744.
Thun R., Hurtado M. and Janett F. (2002). Comparison of Biociphos-Plus® and TRIS-egg yolk extender for cryopreservation of bull semen. Theriogenology. 57, 1087-1094.
Vernet P., Fulton N., Wallace C. and Aitken R.J. (2001). Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biol. Reprod. 65, 1102-1113.
Vishwanath R. and Shannon P. (2000). Storage of bovine semen in liquid and frozen state. Anim. Reprod. Sci. 62, 23-53.
Wittayarat M., Kimura T., Kodama R., Namula Z., Chatdarong K., Techakumphu M., Sato Y., Mand T. and Otoi T. (2012). Long-term preservation of chilled canine semen using vitamin C in combination with green tea polyphenol. Cryo-Letters. 33, 318-326.
Zeitoun M.M. and Al-Damegh M.A. (2015). Effect of non-enzymatic antioxidants on sperm motility and survival relative to free radicals and antioxidant enzymes of chilled-stored ram semen. Open J. Anim. Sci. 5, 50-58.
Zieve D. (2010). In Vitamin C: MedlinePlus Medical Encyclopedia. Available at: http://www.nlm.nih.gov/medlineplus/ency/article/002404.htm.