Comparison of Fresh and Cryopreserved Semen Quality of Polled and Horned Bali Bulls
Subject Areas : CamelH. Hasbi 1 , M.I.A. Dagong 2 , Z. Zulkharnain 3 , S. Baba 4 , H. Sonjaya 5 , S. Baco 6 , S. Gustina 7 , T. Maulana 8 , M. Gunawan 9 , P.P. Agung 10 , N. Herlina 11 , N.D. Yanthi 12 , E.M. Kaiin 13 , S. Said 14 *
1 - Faculty of Animal Science, Hasanuddin University, South Sulawesi, Indonesia
2 - Faculty of Animal Science, Hasanuddin University, South Sulawesi, Indonesia
3 - Faculty of Animal Science, Hasanuddin University, South Sulawesi, Indonesia
4 - Faculty of Animal Science, Hasanuddin University, South Sulawesi, Indonesia
5 - Faculty of Animal Science, Hasanuddin University, South Sulawesi, Indonesia
6 - Faculty of Animal Science, Hasanuddin University, South Sulawesi, Indonesia
7 - Department of Animal Science, Faculty of Animal Science and Fisheries, Universitas Sulawesi Barat, Majene, Indonesia
8 - Research Center for Applied Zoology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), West Java, Indonesia
9 - Research Center for Applied Zoology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), West Java, Indonesia
10 - Research Center for Applied Zoology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), West Java, Indonesia
11 - Research Center for Applied Zoology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), West Java, Indonesia
12 - Research Center for Applied Zoology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), West Java, Indonesia
13 - Research Center for Applied Zoology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), West Java, Indonesia
14 - Research Center for Applied Zoology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), West Java, Indonesia
Keywords: breed, Bali bulls, horned, polled, sperm characteristics,
Abstract :
A purpose of study is to examine sperm quality of Bali polled and horned bulls. The semen samples collected from 4 Bali polled bulls and 4 horned bulls aged between 5 and 7 years using an artificial vagina, then evaluated macroscopically and microscopically. A macroscopic evaluation revealed no significant differences of semen between polled and horned cattle. However, the microscopic evaluation revealed that sperm concentration, motility, and abnormality of polled bulls were significantly lower than the horned bulls, and there was no apparent difference between viability and membrane integrity. Except for abnormalities and DNA integrity of spermatozoa, all parameters of sperm quality were not significantly different between polled and horned bulls. Sperm abnormalities in polled bulls were significantly higher than in horned ones. However, sperm DNA integrity of the polled bulls was significantly higher than horned bulls. The analysis of CASA revealed that most kinematics were higher in polled bull spermatozoa than in horned ones, except for wobble (WOB) or ration of velocity average path (VAP) and velocity curvilinear (VCL) and amplitude of lateral head displacement (ALH), which were higher in horned bulls than in polled bulls. We therefore concluded that the quality of fresh sperm from horned bulls was better than polled bulls. However, polled bulls semen has greater freezing ability than the horned ones. Furthermore, the polled and horned bulls had the same semen characteristics that enable them for fertilizing ability, and both bulls have good DNA integrity.
Aitken R.J., Harkiss D. and Buckingham D.W. (1993). Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol. Reprod. Dev. 35, 302-315.
Arif A.A., Maulana T., Kaiin E.M., Purwantara B., Arifiantini R.I. and Memili E. (2020). Comparative analysis of various step-dilution techniques on the quality of frozen Limousin bull semen. Vet. World. 13(11), 2422-2428.
Baco S., Zulkharnain., Malaka R. and Moekti G.R. (2020). Polled bali cattle and potentials for the development of breeding industry in Indonesia. Hasanuddin J. Anim. Sci. 2(1), 23-33.
Badan Standardisasi Nasional. (2017). Semen Beku Sapi Bagian. Jakarta, Indonesia.
Bao J. and Bedford M.T. (2016). Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction. 151(5), 55-70.
Baracaldo M., Barth A. and Bertrand W. (2007). Steps for Freezing Bovine Semen: From Semen Collection to the Liquid Nitrogen Tank. IVIS Reviews in Veterinary Medicine. Available at: http://www.uesc.br/cursos/pos_graduacao/mestrado/animal/bibliograf ia2007/baracaldo_et_at_2007.pdf.
Barth A.D. (2007). Evaluation of potential breeding soundness of the bull. Pp. 228-240 in Current Therapy in Large Animal Theriogenology. R.S. Youngquist, Ed., WB Saunders, Philadelphia, Pennsylvania.
Belala R., Briand-Amirat L., Martinot A., Thorin C., Michaud S., Desherces S., Youngs C. and Bencharif D. (2019). A comparison of liquid and lyophilized egg yolk plasma to low density lipoproteins for freezing of canine spermatozoa. Reprod. Domest. Anim. 54, 1131-1138.
Bianchi P.G., Manicardi G.C., Urner F., Campana A. and Sakkas D. (1996). Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol. Hum. Reprod. 2, 139-144.
Bochenek M., Smorag Z. and Pilch J. (2001). Sperm chromatin structure assay of bulls qualified for artificial insemination. Theriogenology. 56(4), 557-67.
Bussalleu E., Yesteb M., Sepulvedaa L., Tornera E., Pinarta E. and Bonetm S. (2011). Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Anim. Reprod. Sci. 127, 176-182.
Carreira J.T., Trevizan J.T., Carvalho I.R., Kipper B., Rodrigues L.H., Silva C., Perri S.H.V., Drevet J.R. and Koivisto M.B. (2017). Does sperm quality and DNA integrity differ in cryopreserved semen samples from a young, adult, and aged Nellore bulls? Basic Clin. Androl. 27, 12-24.
Celeghini E.C., Nascimento J., Raphael C.F., Andrade A.F. and Arruda R.P. (2010). Simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes in ram sperm by fluorescent probes. Arq. Bras. Med. Vet. Zootec. 62, 536-543.
Contri A., Gloriaa A., Robbea D., Valorzb C., Wegherb L. and Carluccio A. (2013). Kinematic study on the effect of pH on bull sperm function. Anim. Reprod. Sci. 136(4), 252-259.
Costa M.Z., Oliveira L.Z., Resende M.V., Lucio A.C., Perini A.P., Miguel M.C.V. and Lima V.F.M.H. (2010). Induction of the acrosome reaction test to in vitro estimate embryo production in Nelore cattle. Arq. Bras. Med. Vet. Zootec. 62(4), 771-777
D’Occhio J., Hengstberger K.J., Tutt D., Holroyd R.G., Fordyce G., Boe-Hansen G.B. and Johnston S.D. (2013). Sperm chromatin in beef bulls in tropical environments. Theriogenology. 79(6), 946-952.
Dogan S., Vargovic P., Oliveira R., Belser L.E., Kaya A., Moura A., Sutovsky P., Parrish J., Topper E. and Memili E. (2015). Sperm protamine-status correlates to the fertility of breeding bulls. Biol. Reprod. 92(4), 1-9.
Garner D.L. and Hafez E.S.E. (2016). Spermatozoa and seminal plasma. Pp. 96-109 in Reproduction in farm animals. B. Hafez and E.S.E. Hafez, Eds., Lippincott Williams and Wilkins, Philadelphia, Pennsylvania.
Garrick D.J. and Ruvinsky A. (2015). The Genetics of Cattle. CAB International, Boston, USA.
Gebreyesus G., Lund M.S., Kupisiewicz K. and Su G. (2021). Genetic parameters of semen quality traits and genetic correlations with service sire nonreturn rate in Nordic Holstein bulls. J. Dairy Sci. 104, 10010-10019.
Gilani Z.S. and Gilani M.A.S. (1998). The correlation between sperm morphology and motility in fertile and infertile men. Med. J. Islam. Repub. Iran. 11(4), 319-324.
Gredler B., Fuerst C., Fuerst-Waltl B., Schwarzenbacher H. and Sölkner J. (2007). Genetic parameters for semen production traits in Austrian dual purpose Simmental bulls. Reprod. Domest. Anim. 42, 326-328.
Hasbi H., Prahesti K.I., Sonjaya H., Baco S., Wildayanti W. and Gustina S. (2021). Characteristics of libido and testosterone concentrations of Bali polled and horned Bulls. IOP Conf. Earth Environ. Sci. 788, 12141.
Hutchison J.M., Rau D.C. and Derouchey J.E. (2017). Role of disulfide bonds on DNA packaging forces in bull sperm chromatin. Biophys. J. 113(9), 1925-1933.
Inanc M.E., Beste C., Tekin K., Alemdar H. and Daskin A. (2018). The combination of CASA kinetic parameters and fluorescein stainning as a fertility tool in cryopreserved bull semen. Turkish J. Vet. Anim. Sci. 42, 452-458.
India Agriculture Ministry. (2014). Compendium of Minimum Standards of Protocol and Standard Operating Procedures for Bovine Breeding. Department of Animal Husbandry, Dairying and Fisheries, India.
Indriastuti R., Ulum M.F., Arifiantini R.I. and Purwantara B. (2020). Individual variation in fresh and frozen semen of Bali bull (Bos sondaicus). Vet. World. 13, 840-846.
Johnson W.H. (1997). The significance to bull fertility of morphologically abnormal sperm. Vet. Clin. North Am. Food Anim. Pract. 13, 255-270.
Karabulut A. and Tekin A. (2013). Alterations in the morphology and motility of spermatozoa: Relation with total sperm count. Pamukkale Med. J. 6(1), 1-4.
Karoui S., Díaz C., Serrano M., Cue R., Celorrio I. and Carabaño M.J. (2011). Time trends, environmental factors and genetic basis of semen traits collected in Holstein bulls under commercial conditions. Anim. Reprod. Sci. 124, 28-38.
Khezri A., Narud B., Stenseth E.B., Johannisson A., Myromslien F.D., Gaustad A.H., Wilson R.C., Lyle R., Morrell J.M., Kommisrud E. and Ahmad R. (2019). DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics. 20(1), 897-907.
Kumaresan A., Gupta M.D., Datta T.K. and Morrell J.M. (2020). Sperm DNA integrity and male fertility in farm animals: A review. Front. Vet. Sci. 7, 321-330.
Len J.S., Koh W.S.D. and Tan S.X. (2019). The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 39, 24-32.
Mapel X.M., Hiltpold M., Kadri N.K., Witschi U. and Pausch H. (2022). Bull fertility and semen quality are not correlated with dairy and production traits in Brown Swiss cattle. JDS Commun. 3(2), 120-125.
Martojo H. (2003). A simple selection program for smallholder bali cattle farmers. Pp. 45-51 in Strategies to Improve Bali Cattle in Eastern Indonesia. K. Entwistle and D.R. Lindsay, Eds. Australian Centre for International Agricultural Research proceedings series, Canberra, Australia.
Maulana T. and Said S. (2019). Kinematics motility of frozen-thawed X and Y sperm of Sumba Ongole bull. IOP Conf. Earth Environ. Sci. 387, 12030.
Miranda P.V., Allaire A., Sosnik J. and Visconti P.E. (2009). Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol. Reprod. 80, 897-904.
Murphy C., Fahey A.G., Shafat A. and Fair S. (2013). Reducing sperm concentration is critical to limiting the oxidative stress challenge in liquid bull semen. J. Dairy Sci. 96(70), 4447-4454.
Nabilla A., Arifiantini R.I. and Purwantara B. (2018). Fresh semen quality of Bali bull in productive and non-productive age and determination of cryoprotectant concentration in Tris Egg Yolk extender. J. Vet. 19, 242-250.
Oehninger S. and Kruger T.F. (2021). Sperm morphology and its disorders in the context of infertility. Fertil. Steril. Rev. 2(1), 75-92.
Okazaki T., Miharaa T., Fujitaa Y., Yoshida S., Teshima H. and Shimada M. (2010). Polymyxin B neutralizes bacteria-released endotoxin and improves the quality of boar sperm during liquid storage and cryopreservation. Theriogenology. 74, 1691-1700.
Oliveira L.Z., de Arruda R.P., de Andrade A.F.C., Celeghini E.C.C., Reeb P.D. and de Lima V.F.M.H. (2013). Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Anim. Reprod. Sci. 137, 145-155.
Ostermeier G.C., Sargeant G.A., Yandell B.S., Evenson D.P. and Parrish J.J. (2001). Relationship of bull fertility to sperm nuclear shape. J. Androl. 22, 595-603.
Paddrik P., Hallap T., Kaart T., Bulitko T. and Jaakmal U. (2012). Relationships between the results of hypoosmotic swelling tests, sperm motility, and fertility in Estonian Holstein dairy bulls. Czech J. Anim. Sci. 57(10), 490-497.
Priyanto L., Arifiantini R.I. and Yusuf T.L. (2015). Detection of sperm DNA damage in fresh and frozen semen using Toluidine Blue Staining. J. Vet. 16(1), 48-55.
Puglisi R., Pozzi A., Foglio L., Spano M., Eleuteri P., Grollino M.G., Bongioni G. and Galli A. (2012). The usefulness of combining traditional sperm assessments with in vitro heterospermic insemination to identify bulls of low fertility as estimated in vivo. Anim. Reprod. Sci. 132, 17-28.
Purwantara B., Noor R.R., Andersson G. and Rodriguez- Martinez H. (2012). Banteng and Bali cattle in Indonesia: Status and forecasts. Reprod. Domest. Anim. 47(1), 2-6.
Rahayu S. (2014). The reproductive performance of Bali cattle and it’s genetic variation: A review. J. Biol. Res. 20, 28-35.
Rajabi-Toustani R., Akter Q.S., Alamadaly E.A., Hoshino Y., Adachi H., Mukoujima K. and Murase T. (2019). Methodological improvement of fluorescein isothiocyanate peanut agglutinin (FITC-PNA) acrosomal integrity staining for frozen-thawed Japanese Black bull spermatozoa. J. Vet. Med. Sci. 81(5), 694-702.
Said S., Funahashi H. and Niwa K. (1999). DNA stability and thiol- disulphide status of rat sperm nuclei during epididymal maturation and penetration of oocytes. Zygote. 7, 249-254.
Said S., Han M.S. and Niwa K. (2003). Development of rat oocytes following intracytoplasmic injection of sperm heads isolated from testicular and epididymal spermatozoa. Theriogenology. 60, 359-369.
Said S., Afiati F. and Maulana T. (2015). Study on changes of sperm head morphometry and DNA integrity of freeze-dried bovine spermatozoa. J. Indonesian Trop. Anim. Agric. 40, 145-152.
Santoso S., Herdis H., Arifiantini R.I., Gunawan A. and Sumantri C. (2021). Characteristics and potential production of frozen semen of Pasundan Bull. Trop. Anim. Sci. J. 44(1), 24-31.
Saputra D.J., Ihsan M.N. and Isnaini N. (2017). Korelasi antara lingkar skrotum dengan volume semen, konsentrasi dan motilitas spermatozoa pejantan sapi Bali. J. Trop. Anim. Prod. 18(2), 59-68.
Simoes R., Feitosa W.B., Mendes C.M., Marques M.G., Nicacio A.C., de Barros F.R.O., Visintin J.A. and Assumpcao M.E.O.A. (2009). Use of chromomycin A3 staining in bovine sperm cells for detection of protamine deficiency. Biotech Histochem. 84, 79-83.
Simon L., Castillo J., Oliva R. and Lewis S.E.M. (2011). Relationships between human sperm protamines, DNA damage, and assisted reproduction outcomes. Reprod. BioMed. Online. 23, 724-734.
Soderquist L., Janson L., Larsson K. and Einarsson S. (1991). Sperm morphology and fertility in A.I. bulls. Zentralbl. Veterinarmed. A. 38(7), 534-543.
Sorensen J.A.M. (1979). Laboratory Manual for Animal Reproduction. American Press, Boston, Massachusetts.
Sukmawati E., Arifiantini R.I. and Purwantara B. (2014). The freezing capacity of sperm on various types of superior bulls. Indonesian J. Anim. Vet. Sci. 19(3), 168-175.
Thundathil J., Palasz A.T., Mapletoft R.J. and Barth A.D. (1999). An investigation of the fertilizing characteristics of pyriform-shaped bovine spermatozoa. Anim. Reprod. Sci. 57, 35-50.
Zandemami M., Qujeq D., Akhondi M.M., Kamali K., Raygani M., Lakpour N., Shiraz E.S. and Sadeghi M.R. (2012). Correlation of CMA3 staining with sperm quality and protamine deficiency. Lab. Med. 43(6), 262-267.