طراحی شعب سبز بانکهای ایران با برق تجدیدپذیر
محورهای موضوعی : آب و محیط زیستمصطفی اسماعیلی شایان 1 , غلامحسن نجفی 2 * , احمد بناکار 3
1 - دانشجوی دکتری مهندسی انرژیهای تجدیدپذیر، دانشگاه تربیت مدرس، تهران، ایران
2 - دانشیار گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس، تهران، ایران
3 - دانشیار گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس، تهران، ایران
کلید واژه: کلمات کلیدی: مدل ساندیا, نیروگاه فتوولتاییک, شعبهی سبز,
چکیده مقاله :
در این پژوهش بر اساس دادههای هواشناسی و همچنین استفاده از استاندارد مدل ساندیا در هواشناسی مجازی، اقدام به طراحی و شبیه سازی نیروگاه فتوولتاییک در 5 ساختمان شرکتی در استان های تهران، فارس، قم و یزد شد. داده های شبیه سازی و طراحی با داده های واقعی مصرف توان اعتبار سنجی شده و ساختمان شعب سبز معرفی شدند. نتایج مطالعات طراحی فنی نیروگاه های متصل به شبکه(تولید-تقاضا) نشان داد: شعبه ی دستواره ی تهران مستقل از شبکه ی سراسری برق، تقاضای توان الکتریکی را تا 151 درصد تامین می کند. این شعبه به عنوان شعبه ی سبز معرفی شد. نیروگاه ساختمانی شعب: مرکزی یزد 37/26 درصد، امیرکبیر تهران 80/38 درصد، سیبویه شیراز 90/41 درصد و بولوار امین قم 72/21 درصد از تقاضای توان الکتریکی ساختمان شعب را پاسخ داد. تحلیل اقتصادی دوره ی بازگشت سرمایه در نیروگاه ساختمان شعبه ی دستواره تهران را کمینه و معادل 16/5 سال و سیبویه شیراز را بیشینه و معادل 51/8 سال نشان داد. تحلیل تامین نیاز ساختمان شعب از طریق نیروگاه فتوولتاییک اثبات کرد: استفاده از ساختمان با مساحت بزرگ در شعب سبز بانک ها بهینه نبوده و بهتر است از فضای پارکینک و حیاط که همزمان نیاز به سیستم تهویه ی مطبوع ندارند، جهت تامین سطح مورد نظر نیروگاه استفاده شود. بیش ترین تابش بر دیوارهای جنوبی به میزان 90 کیلووات ساعت بر مترمربع در مهرماه و کمترین مقدار آن در خردادماه به میزان 21 کیلووات ساعت بر مترمربع ثبت شد. ساختمان های واقع در عرض جغرافیایی تهران به منظور بهره گیری بیشینه از مساحت برای تولید انرژی نیروگاهی فتوولتاییک بهتراست شمالی باشند و از دیوار جنوبی همزمان برای تامین سطح مورد نیاز نیروگاه فتوولتایک بهره گرفته شود.
In this research, based on meteorological data and also using the Sandia model standard in virtual meteorology, a photovoltaic power plant was designed and simulated in 5 company buildings in Tehran, Fars, Qom and Yazd provinces. Simulation and design data were validated with real power consumption data and green branch buildings were introduced. The results of technical design studies of grid-connected power plants (production-demand) showed: The Tehran branch office, independent of the national electricity grid, supplies electricity demand up to 151 percent. This branch was introduced as a green branch. Branch construction power plant: Central Yazd 26.37%, Amirkabir Tehran 38.80%, Sibouyeh Shiraz 41.90% and Amin Boulevard Qom 21.72% responded to the demand of electric power of branch buildings. Economic analysis showed the return on investment period in the power plant of Tehran Dastavareh branch to be minimum and equivalent to 5.16 years and Sibouyeh Shiraz to be maximum and equivalent to 8.51 years. The analysis of supplying the needs of the branch buildings through photovoltaic power plant proved: the use of large buildings in the green branches of banks is not optimal and it is better to use the parking space and yard, which do not need air conditioning system at the same time, to provide the case level. Use the power plant opinion. The highest radiation on the southern walls at the rate of 90 kWh per square meter was recorded in October and the lowest amount was recorded in June at the rate of 21 kWh per square meter. Buildings located in the latitude of Tehran in order to make the most of the area for energy production of photovoltaic power plants should be north and south wall should be used at the same time to provide the required level of photovoltaic power plant.
1- Europe SP. Global market outlook for solar power 2015–2019. Euoropean Photovolt Ind Assoc Bruxelles, Tech Rep. 2015;
2- tng. Tianjin Jinneng Solar Cell Co. Ltd [Internet]. 2017 [cited 2017 Jun 18]. Available from: http://www.globalsources.com/si/AS/Tianjin-Jinneng/6008815379287/Showroom/3000000149681/ALL.htm
3- Prasad D, Snow M. Designing with Solar Power: A Source Book for Building Integrated Photovoltaics (BIPV) [Internet]. Images; 2014 [cited 2017 Jul 2]. Available from: https://books.google.com/books/about/Designing_with_Solar_Power.html?id=_sC32NrngP8C
4- Graff KM, Eng B. Environmental Effects on the Operation of Triple-Junction Flexible Photovoltaic Panels. 2014;
5- انرژی ت. ترازنامه انرژی. (1394). ترازنامه انرژی سال 1394. وزارت نیرو. معاونت امور برق و انرژی دفتر برنامه ریزی کلان برق و انرژی. نشانی وبسایت:http://www.cbi.ir/showitem/16085.aspx
6- Zohoori M. Exploiting Renewable Energy Sources in Iran. Interdiscip J Contemp Res Bus [Internet]. 2012 [cited 2017 Jul 2];4(7):849–62. Available from: http://journal-archieves25.webs.com/849-862.pdf
7- Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H. A review on global solar energy policy. Renew Sustain Energy Rev [Internet]. 2011 [cited 2018 Feb 15];15:2149–63. Available from: http://wgbis.ces.iisc.ernet.in/biodiversity/sahyadri_enews/newsletter/issue45/bibliography/A review on global solar energy policy.pdf
8- رئوفی راد م. طراحی سیستمهای خورشیدی ساختمان در ایران. فدک ایساتیس; 1386، صفحات 420
9- Tina GM, Grasso AD. Remote monitoring system for stand-alone photovoltaic power plants: The case study of a PV-powered outdoor refrigerator. Energy Convers Manag [Internet]. 2014;78:862–71. Available from: http://dx.doi.org/10.1016/j.enconman.2013.08.065
10- IEA. Sustainable Technology at the Brundtland Centre Denmark. Int Energy Agency [Internet]. 2017 [cited 2017 Jul 2];9. Available from: http://www.caddet-re.org/assets/no89.pdf
11- Buker MS, Mempouo B, Riffat SB. Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: An experimental validation. Energy Build [Internet]. 2014;76:164–75. Available from: http://dx.doi.org/10.1016/j.enbuild.2014.02.078
12- م، ربیعی. (1391)، تأمین سه درصد از کل انرژی کشور با منابع تجدید پذیر، ماهنامه بینالمللی آموزشی، پژوهشی تحلیل و اطلاعرسانی پیام سبز، شماره 106، 68-53.
13- م، جوادی. ا، جلیل وند. ر، نوروزیان. م، ولی زاده. (1389)، طراحی بهینه و مدیریت هوشمند انرژی سیستم هیبرید مستقل از شبکه برای مناطق روستایی، نشریه انرژی ایران، جلد 13، شماره 4، 58-40.
14- س، صالحی قلعه سفید. م، دهقانی. ع، توکلی. م، ارفاق. (1390-1391)، مطالعه تأثیر شرایط محیطی بر روی بازده سلولهای خورشیدی در استان خوزستان و ارائه راهکارهایی برای بهبود عملکرد آنها، پروژه تحقیقاتی شرکت برق منطقهای خوزستان، 93-41.
15- م، شفیعی. ر، فیاض. ش، حیدری. (1392)، فرم مناسب ساختمان بلند برای دریافت انرژی تابشی در تهران، نشریه انرژی ایران، جلد 16، شماره 4، 47-60
16- ح، کاظمی کارگر. م، نوروزی. (1389)، پنلهای فتوولتاییک آشنایی اصول و طراحی، انتشارات آراد کتاب، 115-69.
17- ف، عتابی. ا، موسی زاده نمینی. آ، رسولی. (1390)، کاهش انتشار گازهای گلخانهای با استفاده از سیستمهای فتوولتاییک در ساختمانهای مسکونی، نخستین همایش ملی انرژی باد و خورشید، 36-24.
18- م. بهادری نژاد. ح، صفرزاده. (1381)، طراحی یک ساختمان بینیاز از انرژی فسیلی در تهران(ساختمان سبز)، در دومین همایش بینالمللی بهینهسازی مصرف سوخت در ساختمان، 100-122
19- Bany J, Appelbaum J. The effect of shading on the design of a field of solar collectors. Sol Cells. 1987;20(3):201–28.
20- Soulayman S, Hammoud M. Optimum tilt angle of solar collectors for building applications in mid-latitude zone. Energy Convers Manag [Internet]. 2016 [cited 2017 Jul 2];124:20–8. Available from: https://offcamp.modares.ac.ir/+CSCO+0h756767633A2F2F6E702E7279662D7071612E70627A++/S0196890416305556/1-s2.0-S0196890416305556-main.pdf?_tid=685cff14-5f11-11e7-b1b3-00000aab0f6b&acdnat=1498991583_c5da4f504eab5fa4d394660c89128745
21- Fara L, Craciunescu D. ScienceDirect Sustainable Solutions for Energy and Environment, EENVIRO Output Analysis of Stand-Alone PV Systems: Modeling, Simulation and Control. Energy Procedia [Internet]. 2017 [cited 2017 Jul 2];112:595–605. Available from: https://offcamp.modares.ac.ir/+CSCO+0h756767633A2F2F6E702E7279662D7071612E70627A++/S187661021731250X/1-s2.0-S187661021731250X-main.pdf?_tid=8e71faca-5f15-11e7-8f05-00000aab0f26&acdnat=1498993364_560f76890524237236671e7d662d9c22
22- ع، اکرامی. م، صادقی. (1387)، ارزیابی اقتصادی توسعه نیروگاههای خورشیدی با توجه به ملاحظات زیست محیطی، فصلنامه علوم و تکنولوژی محیطزیست، شماره10، 51-44.
23- Ekoe A Akata AM, Njomo D, Agrawal B. Assessment of Building Integrated Photovoltaic (BIPV) for sustainable energy performance in tropical regions of Cameroon. Renew Sustain Energy Rev [Internet]. 2017;80(September 2016):1138–52. Available from: http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/S1364032117307992
24- Tomar V, Tiwari GN. Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi ??? A sustainable approach. Renew Sustain Energy Rev [Internet]. 2017;70(November 2016):822–35. Available from: http://dx.doi.org/10.1016/j.rser.2016.11.263
25- Sheikhi A, Ranjbar AM, Oraee H. Financial analysis and optimal size and operation for a multicarrier energy system. Energy Build [Internet]. 2012 [cited 2017 Jul 2];48:71–8. Available from: https://offcamp.modares.ac.ir/+CSCO+0h756767633A2F2F6E702E7279662D7071612E70627A++/S0378778812000138/1-s2.0-S0378778812000138-main.pdf?_tid=5901bffe-5f1c-11e7-b70e-00000aacb360&acdnat=1498996281_b9dbb8a26ae0b517cbf05e9e544086b3
26- Deline C, Marion B, Granata J, Gonzalez S, Buker MS, Mempouo B, et al. A performance and economic analysis of distributed power electronics in photovoltaic systems. Contract [Internet]. 2011 [cited 2017 Jun 17];303(January):275–3000. Available from: http://dx.doi.org/10.1016/j.enbuild.2014.02.078
27- Zubi G, Dufo-L??pez R, Pasaoglu G, Pardo N. Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020-2040 scenario. Appl Energy [Internet]. 2016;176:309–19. Available from: http://dx.doi.org/10.1016/j.apenergy.2016.05.022
28- Biyik E, Araz M, Hepbasli A, Shahrestani M, Yao R, Shao L, et al. Engineering Science and Technology , an International Journal A key review of building integrated photovoltaic ( BIPV ) systems. Eng Sci Technol an Int J [Internet]. 2017; Available from: http://dx.doi.org/10.1016/j.jestch.2017.01.009
29- Bloem JJ, Lodi C, Cipriano J, Chemisana D. An outdoor Test Reference Environment for double skin applications of Building Integrated PhotoVoltaic Systems. Energy Build [Internet]. 2012;50:63–73. Available from: http://dx.doi.org/10.1016/j.enbuild.2012.03.023
30- بانک مرکزی. (1396). بررسی تحولات تورم طی سالهای 1390 الی 1395. سایت بانک مرکزی جمهوری اسلامی ایران. نشانی وبسایت: http://www.cbi.ir/showitem/16085.aspx
31- ساتبا. (1396). تعرفه خرید تضمینی برق از نیروگاههای تجدید پذیر و پاک. سایت سازمان انرژیهای تجدید پذیر و بهرهوری انرژی برق(ساتبا). نشانی وبسایت: http://www.satba.gov.ir/Components/News/View/NewsPDF
32- Hossain Mondal MA. Economic viability of solar home systems: Case study of Bangladesh. Renew Energy [Internet]. 2010 [cited 2017 Jun 17];35(6):1125–9. Available from: https://offcamp.modares.ac.ir/+CSCO+0h756767633A2F2F6E702E7279662D7071612E70627A++/S096014810900531X/1-s2.0-S096014810900531X-main.pdf?_tid=52250ae0-539d-11e7-9764-00000aab0f6c&acdnat=1497732261_fa034f1d1726fcc723391b00468bc32a
_||_