بررسی کاربرد هوش مصنوعی جغرافیایی (GeoAI) در مدیریت و برنامهریزی شهری
محورهای موضوعی : کاربرد GIS&RS در برنامه ریزی
1 - عضو هیئت علمی گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد سمنان
کلید واژه: هوش مصنوعی جغرافیایی GeoAI, مدیریت شهری, برنامهریزی شهری, دادههای مکانی, یادگیری ماشین, شهر هوشمند, GIS ,
چکیده مقاله :
این مقاله به بررسی جامع کاربرد هوش مصنوعی جغرافیایی (GeoAI) در حوزه مدیریت و برنامهریزی شهری میپردازد. با رشد روزافزون دادههای مکانی و افزایش نیاز به تحلیلهای دقیق در فرآیندهای شهری، فناوری GeoAI با تلفیق الگوریتمهای یادگیری ماشین، تحلیلهای پیشرفته و تجسم سهبعدی، نقش مهمی در شناسایی الگوهای پیچیده و پیشبینی روندهای رشد و تغییر کاربری مناطق ایفا میکند. در این مطالعه، ابتدا مفاهیم پایهای و چارچوب نظری GeoAI تشریح شده و سپس کاربردهای عملی آن در بهبود سیستمهای حمل و نقل، کاهش تراکم ترافیکی، شناسایی نقاط پرتردد و مدیریت بحران در شهرهای بزرگ مورد بررسی قرار گرفته است. استفاده از GeoAI با ترکیب دادههای حاصل از سنجش از دور، حسگرهای اینترنت اشیا و نقشههای دیجیتال، به مدیران شهری این امکان را میدهد تا با دسترسی به اطلاعات بهروز و دقیق، تصمیمات استراتژیک در راستای توسعه پایدار را اتخاذ نمایند. این فناوری با تحلیل همزمان دادههای فضایی و توصیفی، نقاط ضعف و قوت سیستمهای موجود را شناسایی و راهکارهای بهینه جهت برنامهریزی و مدیریت منابع شهری ارائه میدهد. علاوه بر این، بهکارگیری GeoAI موجب کاهش هزینههای اجرایی، افزایش کارایی در تخصیص منابع و بهبود کیفیت خدمات شهری میشود. نتایج بهدست آمده نشان میدهد که استفاده از هوش مصنوعی جغرافیایی به عنوان ابزاری تحولآفرین در برنامهریزی شهری، میتواند نقش بسزایی در ایجاد شهرهای هوشمند، پویاتر و پایدار داشته باشد. مقاله علاوه بر ارائه چارچوب مفهومی، پیشنهاداتی جهت توسعه بیشتر فناوریهای مرتبط و ادغام آنها با سیستمهای مدیریت شهری ارائه نموده و افقهای جدیدی را در بهبود عملکرد شهری ترسیم میکند.
This paper provides a comprehensive examination of the applications of Geographic Artificial Intelligence (GeoAI) in urban management and planning. With the rapid growth of spatial data and an increasing demand for precise analyses in urban processes, GeoAI—through the integration of machine learning algorithms, advanced analytical techniques, and three-dimensional visualization—plays a pivotal role in identifying complex patterns and forecasting trends in urban growth and land-use changes. In this study, the foundational concepts and theoretical framework of GeoAI are first delineated, followed by an investigation of its practical applications in enhancing transportation systems, reducing traffic congestion, identifying high-density areas, and managing crises in large metropolitan environments.
The utilization of GeoAI, by merging data derived from remote sensing, Internet of Things (IoT) sensors, and digital mapping technologies, empowers urban managers to access accurate and up-to-date information, thereby facilitating strategic decision-making aligned with sustainable development goals. By simultaneously analyzing spatial and attribute data, this technology effectively uncovers the strengths and weaknesses of existing urban systems and offers optimal solutions for planning and resource management. Moreover, the deployment of GeoAI contributes to reduced operational costs, enhanced efficiency in resource allocation, and overall improvement in the quality of urban services.
The findings of this study indicate that employing Geographic Artificial Intelligence as a transformative tool in urban planning can significantly contribute to the development of smarter, more dynamic, and sustainable cities. In addition to presenting a robust conceptual framework, this paper offers recommendations for further advancement of related technologies and their integration into urban management systems, thereby charting new horizons for improved urban performance.
Abd Rahman, M. F. (2025). GIS Applications in Disaster Management: Transforming Crisis Response and Mitigation. https://doi.org/10.13140/RG.2.2.25010.31680
Aidaoui, A., Dechaicha, A., Alkama, D., Menai, I., & Salah, H. (2024). Mapping Tomorrow’s Cities: GeoAI Strategies for Sustainable Urban Planning and Land Use Optimization. Journal of Contemporary Urban Affairs, 8(1), 158–176. https://doi.org/10.25034/ijcua.2024.v8n1-9
Alastal, A. I., & Shaqfa, A. H. (2022). GeoAI Technologies and Their Application Areas in Urban Planning and Land Use Management. Journal of Data Analysis and Information Processing, 10(2), 110–125. https://doi.org/10.4236/jdaip.2022.102007
Allam, Z., & Dhunny, Z. A. (2019). On big data, artificial intelligence and smart cities. Cities, 89, 80–91. https://doi.org/10.1016/j.cities.2019.01.032
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Deep Learning Modelling Techniques: Current Progress, Applications, and Challenges. Applied Intelligence, 51(3), 1706–1725. https://doi.org/10.1007/s10462-021-09924-w
Batty, M., Xie, Y., & Sun, Z. (2022). Multi-agent systems for urban simulation: Modeling land use dynamics and sustainability indicators. Environment and Planning B: Urban Analytics and City Science, 49(7), 1851–1870. https://doi.org/10.1177/23998083211053697
Broussard, G. (2023). This Season’s Artificial Intelligence (AI): Is Today’s AI Really That Different? AI and Ethics, 3(1), 45–54. https://doi.org/10.1007/s43681-023-00388-0
Brown, L., & Green, K. (2024). Leveraging GIS and GeoAI for Building Damage Assessment in Disaster Events: A Case Study of McDonough County, Illinois. International Journal of Disaster Risk Reduction, 56, 102086. https://doi.org/10.1016/j.ijdrr.2024.102086
Chen, Y., Liu, X., Li, X., & al., et. (2023). Modeling urban growth patterns using machine learning and geospatial artificial intelligence (GeoAI). Computers, Environment and Urban Systems, 96, 101965. https://doi.org/10.1016/j.compenvurbsys.2023.101965
Di Pilato, A., Taggio, N., Pompili, A., & al., et. (2021). Deep learning approaches to Earth Observation change detection. https://arxiv.org/abs/2107.06132
Foresman, T. W. (1998). The History of Geographic Information Systems: Perspectives from the Pioneers. Prentice Hall PTR. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921721/
Goodchild, M. F. (2009). Geographic information systems and science: today and tomorrow. Annals of the Association of American Geographers, 100(5), 1077–1081. https://doi.org/10.1080/00045608.2010.518120
Gryech, I., Assad, C., Ghogho, M., & Kobbane, A. (2024). Applications of machine learning and IoT for Outdoor Air Pollution Monitoring and Prediction: A Systematic Literature Review. ArXiv. https://arxiv.org/abs/2401.01788
Gu, Z., & Zeng, M. (2024). The Use of Artificial Intelligence and Satellite Remote Sensing in Land Cover Change Detection: Review and Perspectives. Sustainability, 16(1), 274. https://doi.org/10.3390/su16010274
Khan, A. A., Mahmood, A., Safdar, Z., Khan, M. A., Khan, M. U., Khan, M. S., Khan, M. A., Alenezi, F., Alsharif, S., & Nam, Y. (2023). A Systematic Study on Reinforcement Learning Based Applications. Energies, 16(3), 1512. https://doi.org/10.3390/en16031512
Khan, M. A., Ali, Z., Khan, W., & al., et. (2023). Artificial-Intelligence-Based Investigation on Land Use and Land Cover Change Detection in South Punjab, Pakistan. Land, 14(1), 154. https://doi.org/10.3390/land14010154
Kirilenko, A. P. (2022). Geographic Information System (GIS) BT - Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications (R. Egger (ed.); pp. 513–526). Springer International Publishing. https://doi.org/10.1007/978-3-030-88389-8_24
Kucukpehlivan, T., Cetin, M., Aksoy, T., Senyel Kurkcuoglu, M. A., Cabuk, S. N., Isik Pekkan, O., Dabanli, A., & Cabuk, A. (2023). Determination of the impacts of urban-planning of the urban land area using GIS hotspot analysis. Computers and Electronics in Agriculture, 210, 107935. https://doi.org/https://doi.org/10.1016/j.compag.2023.107935
Kuhn, W., & Ballatore, A. (2023). Pragmatic GeoAI: Geographic Information as Externalized Practice. KI - Künstliche Intelligenz, 37(1), 45–52. https://doi.org/10.1007/s13218-022-00794-2
LeCun, Y., Bengio, Y., & Hinton, G. (2015). A Golden Decade of Deep Learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Li, J., Mou, L., Tao, R., & al., et. (2019). Deep learning for remote sensing image classification: A survey. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6690–6709. https://doi.org/10.1109/TGRS.2019.2907932
Li, W., & Goodchild, M. F. (2020). GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(1), 1–3. https://doi.org/10.1080/13658816.2019.1684500
Li, W., Wang, S., Hu, Y., & al., et. (2022). GeoAI: a review of artificial intelligence approaches for the geospatial information sciences. Geosci Instrum Method Data Syst, 11(2), 195–214. https://doi.org/10.5194/gi-11-195-2022
Li, Z., & Ning, H. (2023). Autonomous GIS: the next-generation AI-powered GIS. https://arxiv.org/abs/2305.06453
Lieto, A. (2021). Cognitive Design for Artificial Minds. Routledge, Taylor & Francis. https://www.routledge.com/Cognitive-Design-for-Artificial-Minds/Lieto/p/book/9780367332201
Lin, L., Li, R., Lin, Y., & al., et. (2018). Emerging trends in geospatial artificial intelligence (geoAI): artificial intelligence in geographic knowledge discovery. Environ Health, 17(1), 67. https://ehjournal.biomedcentral.com/articles/10.1186/s12940-018-0386-x
Minker, J. (2002). Logic and Databases: Past, Present, and Future. AI Magazine, 23(4), 77–98. https://doi.org/10.1609/aimag.v23i4.1710
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(4), 1–20. https://doi.org/10.1007/s42979-021-00592-x
Openshaw, S. (1991). GIS and quantitative geography: a critique. Environment and Planning A: Economy and Space, 23(8), 1065–1070. https://doi.org/10.1068/a231065
Rane, J., Kaya, Ö., Mallick, S. K., & Rane, N. L. (2024). Artificial intelligence-powered spatial analysis and ChatGPT-driven interpretation of remote sensing and GIS data. In Generative Artificial Intelligence in Agriculture, Education, and Business (pp. 162–217). https://doi.org/10.70593/978-81-981271-7-4_5
Rane, N. L., Choudhary, S., & Rane, J. (2023). Integrating internet of things, blockchain, and artificial intelligence techniques for intelligent industry solutions. ArXiv Preprint ArXiv:2310.12345. https://www.researchgate.net/publication/385153566
Rezvani, M., Falcão, A., Komljenovic, D., & de Almeida, A. T. (2023). Geospatial AI and Data Analytics for Satellite-Based Disaster Prediction and Risk Assessment. Open Access Research Journal of Engineering and Technology, 4(2), 58–66. https://www.researchgate.net/publication/387776155_Geospatial_AI_and_data_analytics_for_satellite-based_disaster_prediction_and_risk_assessment
Robinson, C., James, P., Sun, Y., & al., et. (2018). Emerging trends in geospatial artificial intelligence (geoAI). Environmental Health, 17(1), 63. https://doi.org/10.1186/s12940-018-0386-x
Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
Safari Bazargani, J., Sadeghi-Niaraki, A., & Choi, S.-M. (2021). A Survey of GIS and IoT Integration: Applications and Architecture. Applied Sciences, 11(21), 10365. https://doi.org/10.3390/app112110365
Shao, Z., Bell, M. G. H., Wang, Z., Geers, D. G., Xi, H., & Gao, J. (2024). ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction. ArXiv Preprint