پایش منابع آلاینده آب دریاچهها با استفاده از تکنیک سنجش از دور (مطالعه موردی: دریاچه زریبار)
محورهای موضوعی : کاربرد GIS&RS در برنامه ریزی
فاطمه دالوند
1
,
پیمان طهماسبی
2
*
1 - گروه علوم و مهندسی آب،کشاورزی، بوعلی سینا، همدان و ایران.
2 - علوم و مهندسی آب،کشاورزی، بوعلی سینا، همدان و ایران
کلید واژه: دریاچه زریبار, سنتینل-2, غلظت کلروفیل-آ, كيفيت آب, آلودگی,
چکیده مقاله :
رشد جمعیت و تخلیه فاضلابهای مختلف باعث افزایش آلودگی منابع آبی، بهویژه آبهای سطحی، شده است که این امر منجر به رشد جلبکها، کاهش اکسیژن محلول و افت کیفیت آب میشود. بهدلیل هزینهبر و زمانبر بودن روشهای میدانی، فناوری سنجشازدور بهعنوان روشی کارآمد برای پایش کیفیت آب مورد استفاده قرار میگیرد. در این مطالعه، از تصاویر ماهوارهای سنتینل-۲ برای بررسی کیفیت آب دریاچه زریبار و شناسایی منابع آلاینده استفاده شد. ابتدا با اعمال شاخص NDWI، پیکره آبی از سایر عوارض جدا گردید و سپس شاخص NDCI برای برآورد غلظت کلروفیل-آ بهکار رفت که دقت آن با دادههای زمینی R²=0.90 و RMSE=0.07 ارزیابی شد. همچنین، با استفاده از الگوریتم یادگیریماشین جنگل تصادفی، کاربری اراضی منطقه در پنج کلاس جنگل، پیکره آبی، مناطق شهری، کشاورزی و ترکیب جنگل و مرتع طبقهبندی شد که دقت کلی 04/92 درصد و ضریب کاپا 78/88 درصد را نشان داد. نتایج حاکی از آن بود که نواحی ساحلی دریاچه بهدلیل ورود آبراهههای آلوده، بیشترین میزان آلودگی را دارند، درحالیکه چشمههای کف دریاچه موجب کاهش آلودگی در مرکز آن شدهاند. همچنین، قسمت شرقی دریاچه بهعلت مجاورت با اراضی کشاورزی، تخلیه فاضلاب شهری و فعالیتهای تفریحی آلودهتر از سایر بخشها بود. یافتهها نشان داد که استفاده از تصاویر سنتینل-۲ و الگوریتمهای یادگیریماشین، روشی مؤثر و مقرونبهصرفه برای ارزیابی کیفیت منابع آبی است که امکان پایش سریع و دقیق شاخصهای کیفی را فراهم کرده و به مدیریت بهتر منابع آبی و کاهش آلودگی کمک میکند.
Population growth and the discharge of various wastewaters have increased the pollution of water resources, especially surface waters, leading to algal growth, decreased dissolved oxygen, and reduced water quality. Due to the cost and time-consuming nature of field methods, remote sensing technology is used as an efficient method for monitoring water quality. In this study, Sentinel-2 satellite imagery was used to investigate the water quality of Zaribar Lake and identify pollution sources. First, the water body was separated from other features by applying the NDWI index, and then the NDCI index was used to estimate chlorophyll-a concentration, which was evaluated with ground data with R²=0.90 and RMSE=0.07 accuracy. Also, using the random forest machine learning algorithm, the land use of the region was classified into five classes of forest, water body, urban areas, agriculture, and a combination of forest and pasture, which showed an overall accuracy of 92.04% and a kappa coefficient of 88.78%. The results indicated that the coastal areas of the lake have the highest pollution due to the entry of polluted waterways, while the springs at the bottom of the lake have reduced pollution in its center. Also, the eastern part of the lake was more polluted than other parts due to its proximity to agricultural lands, urban wastewater discharge, and recreational activities. The findings showed that the use of Sentinel-2 images and machine learning algorithms is an effective and cost-effective method for assessing the quality of water resources, which enables rapid and accurate monitoring of quality indicators and helps to better manage water resources and reduce pollution.
ابراهیمپور، صلاحالدین و محمدزاده، حسین. (1392). ارزیابی و پهنهبندی کیفیت آب دریاچه زریوار با استفاده از شاخصهای کیفی NSFWQI OWQI, CWQI,. پژوهش های محیط زیست 1-137، (7) 4.
جانعلی پور، میلاد، بابایی، حدیثه، صلواتی¬فر، مریم و عباس زاده طهرانی, نادیا. (1397). پایش کیفیت پهنه¬های آبی با استفاده از تصاویر سنجش از دور هوایی و ماهواره ای (مفاهیم، روشها و راهکارهای نوین). فناوری در مهندسی هوافضا. 2(3). 1-11.
رحمانی خلیلی، فاطمه و حق¬پرست، سارا و نصیراحمدی، کامران و خیرآبادی، وحید،1402،برآورد غلظت کلروفیل-آ در خلیج گرگان با استفاده از تصاویر ماهوارهای سنتینل- ۲، نهمین همایش بین المللی دانش و فناوری علوم کشاورزی، منابع طبیعی و محیط¬زیست ایران، تهران،
https://civilica.com/doc/1964043 طهماسبی، پیمان، بیگلری قلدره، سعدی، بشتامیان، سید مجتبی، حسینی، سید پویا و گل محمدی¬قانع، پگاه . (1403). مقایسه تصاویر ماهوارهای لندست- 8 و سنتینل- 2 جهت تخمین میزان کلروفیل-آ دریاچه زریبا ر. فصلنامه علوم محیطی. 22(4)، 571-584. doi: 10.48308/envs.2024.1373
کیانی، امید و انصاری، عبدالحمید. (1397).کاربردهای سنجش از دور در پایش و مدیریت منابع آب، هفتمین کنفرانس ملی مدیریت منابع آب ایران،یزد،
https://civilica.com/doc/845584 مهدویفرد، مصطفی و ولیزاده کامران، خلیل و عطازاده، احسان. (1399). تخمین غلظت کلروفیل-آ با استفاده از داده¬های میدانی و پردازش تصاویر ماهواره ای سنتینل-2 و لندست-8 (مطالعه موردی: خور تیاب)، https://civilica.com/doc/1019429
میرعلیزاده فرد سیدرضا و منصوری شهروز. (1398). ارزیابی شاخص¬های سنجش ازدور در مطالعات کمی و کیفی آب های سطحی با تصاویر ماهواره ای لندست-8 (مطالعه موردی: جنوب استان خوزستان). سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و GIS در علوم منابع طبیعی 10(2 (پیاپی 35) ):63-84.
Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2018, 11, 64. Barrett, D. C., & Frazier, A. E. (2016). Automated method for monitoring water quality using Landsat imagery. Water, 8(6), 257.
Beck, R., Zhan, S., Liu, H., Tong, S., Yang, B., Xu, M., ... & Su, H. (2016). Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sensing of Environment, 178, 15-30.
Camargo, Z. C. M., Sòria-Perpinyà, X., Pompêo, M., Moschini-Carlos, V., & Sendra, M. D. (2024). Obtaining estimation algorithms for water quality variables in the Jaguari-Jacareí Reservoir using Sentinel-2 images. Remote Sensing Applications: Society and Environment, 36, 101317.Buma, W. G., & Lee, S. I. (2020). Evaluation of sentinel-2 and landsat 8 images for estimating chlorophyll-a concentrations in lake Chad, Africa. Remote Sensing, 12(15), 2437.
Congalton, R.G., 1991. A review of assessing the accuracy of classification of remotely sensed data. Remote Sens. Environ. 37, 35–46. https://doi.org/10.1016/00344257(91)90048-B. Day, J.; Yáñez-Arancibia, A.; Kemp, W.; Crump, B.; Kemp, M. Chapter Nineteen: Human Impact And Management of Coastal And Estuarine Ecosystems, Estuar. Ecol. In Human Impact and Management of Coastal and Estuarine Ecosystems, 2nd ed.; Wiley-Blackwell: Singapore, 2013; Volume 1, pp. 483–496. ISBN 9780471755678.
Jang, W., Kim, J., Kim, J. H., Shin, J. K., Chon, K., Kang, E. T., ... & Kim, S. (2024). Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sensing, 16(2), 315.
Jiang, W., Ni, Y., Pang, Z., He, G., Fu, J., Lu, J., ... & Lei, T. (2020). A new index for identifying water body from Sentinel-2 satellite remote sensing imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 33-38.
Karimi, B., Hashemi, S. H., & Aghighi, H. (2022). Performance of Sentinel-2 and Landsat-8 satellites in estimating Chlorophyll-a concentration in a shallow freshwater lake. Karydis, M., & Kitsiou, D. (2013). Marine water quality monitoring: A review. Marine pollution bulletin, 77(1-2), 23-36.
Liu JiaMing, L. J., Zhang YanJun, Z. Y., Yuan Di, Y. D., & Song XingYuan, S. X. (2015). Empirical estimation of total nitrogen and total phosphorus concentration of urban water bodies in China using high resolution IKONOS multispectral imagery.
Manuel, A., & Blanco, A. C. (2023). Transformation of the normalized difference chlorophyll index to retrieve chlorophyll-a concentrations in Manila Bay. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 217-221.
Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394-406.
Mutanga, O., & Kumar, L. (2019). Google earth engine applications. Remote sensing, 11(5), 591.
Orusa, T., Viani, A., Cammareri, D., & Borgogno Mondino, E. (2023). A google earth engine algorithm to map phenological metrics in mountain areas worldwide with landsat collection and sentinel-2. Geomatics, 3(1), 221-238.
Poddar, S., Chacko, N., & Swain, D. (2019). Estimation of Chlorophyll-a in northern coastal Bay of Bengal using Landsat-8 OLI and Sentinel-2 MSI sensors. Frontiers in Marine Science, 6, 598.
Postel,S., The Last Oasis: Facing Water Scarcity: Routledge, 2014.
Rosegrant, M. W. Cai, X. and S. A. Cline, World water and food to 2025: dealing with scarcity: Intl Food Policy Res Inst, 2002.
Sent, G., Biguino, B., Favareto, L., Cruz, J., Sa, C., Dogliotti, A. I., ... & Brito, A. C. (2021). Deriving water quality parameters using sentinel-2 imagery: A case study in the Sado Estuary, Portugal. Remote sensing, 13(5), 1043.
Sowers, J.,Vengosh, A. and Weinthal, E. “Climate Change, Water Resources, and the Politics of Adaptation in the Middle East and North Africa,” Climatic Change, vol. 104, 2011, pp. 599-627.
Su, Z., Xiang, L., Steffen, H., Jia, L., Deng, F., Wang, W., ... & Gao, P. (2024). A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery. Remote Sensing, 16(15), 2749.
Tian, S.; Zhang, X.; Tian, J.; Sun, Q. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China. Remote Sens. 2016, 8, 954.
Tikuye, B. G., Rusnak, M., Manjunatha, B. R., & Jose, J. (2023). Land use and land cover change detection using the random forest approach: The case of the Upper Blue Nile River basin, Ethiopia. Global Challenges, 7(10), 2300155.
Viessman, W., Hammer, M. J.E. M. Perez, and P. A. Chadik, “Water Supply and Pollution Control,” 1998.
Werdell, P.J.; McKinna, L.I.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212.
Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Bloemertz, L.; Dhanjal-Adams, K.L. Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data. Remote Sens. 2016, 8, 681.
Xiao, X., Jian, X., Xiongfei, W., Chengfang, H., Xuejun, C., Zhaohui, W., & Dengzhong, Z. (2015). Evaluation method of water quality for river based on multi-spectral remote sensing data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 1517-1523.
Zhao, D., Huang, J., Li, Z., Yu, G., & Shen, H. (2024). Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine. Science of The Total Environment, 912, 169152.