بررسی آب قابل بارش جو در شرایط گردوغبار با استفاده از تصاویر ماهواره ای (مطالعه موردی: جنوب غربی ایران)
محورهای موضوعی : برنامه های کاربردی در تغییرات آب و هوایی زمین
طاهره انصافی مقدم
1
*
,
طاهر صفرراد
2
1 - مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
2 - استادیار اقلیم شناسی،گروه جغرافیا و برنامه ریزی شهری، دانشکدة علوم انسانی و اجتماعی، دانشگاه مازندران، ایران
کلید واژه: آئروسل, آب قابل بارش, سنجش از دور, سنجنده مادیس(MODIS), مد 06(MOD06),
چکیده مقاله :
در حالی که تاثیر گازهای گلخانه ای نیروگاه ها، خودروها و سایر ذرات معلق انسان ساخت بر کیفیت هوا و بهداشت عمومی به خوبی شناخته شده، تاثیر آنها بر آب و هوا به طور کامل شناخته نشده است. دانشمندان نشان داده اند که ذرات معلق در هوا می تواند چه به طور مستقیم، از طریق بازتابش انرژی خورشیدی به آسمان، چه به طور غیر مستقیم، با افزایش بازتاب ابرها، درجه حرارت سطح زمین را کاهش دهد. ذرات معلق گردوغبار به ویژه در مناطق شهری و صنعتی، به عنوان عامل کاهنده بارندگی و نزولات آسمانی عمل می کند. ریزگردهای بزرگ (بزرگتر از1 میکرون) می توانند بارندگی را افزایش دهند. اما ذرات بسیار ریز گردوغبار در سطوح فوقانی جو می تواند به سرکوب بارش های فراوان بیانجامد. مطالعه حاضر با هدف بررسی ارتباط ظرفیت آب قابل بارش جوی با وقایع گردوغبار در جنوب غربی ایران طی دوره (1986 - 2016) انجام شده است. این مقاله، با استفاده از داده های طبقه بندی شده محصول مد 06(MOD06) سنجنده مادیس(MODIS) تاثیر گردوغبار بر بارش را مورد بررسی قرار داد. نتایج این تحقیق با بررسی داده های سنجش از دور از جمله مقادیر آب قابل بارش و رخداد گردوغبار جو در برخی موارد انتخابی، نشان داد در مقطعی از زمان که گردوغبار به مقدار بالایی می رسد، میزان آب قابل بارش که نشانگر پتانسیل و توانایی رخداد بارش است، به طور قابل توجهی کاهش می یابد. نتایج این تحقیق نشان داد یکی از اثرات رخدادهای گردوغبار در جنوب غربی ایران، نقصان بارش بوده و گردوغبار می تواند به طور قابل توجهی به عنوان عامل کاهنده یا سرکوب کننده میزان بارندگی در منطقه عمل کند. کارایی بالای محصول مد 06(MOD06) در اثبات اثر کاهش دهندگی گردوغبار بر آب قابل بارش جو در منطقه جنوب غربی ایران، در این تحقیق اثبات گردیده است.
While the Greenhouse gases impacts of Powerhouse، cars، and other man-made particulate matter on air quality and public health، well known، their impact on climate is not fully understood. Scientists have shown that aerosols can lower surface temperatures either directly، by reflecting sunlight skyward، or indirectly، by increasing the reflectivity of clouds، but until now have not figured out the role airborne particles play in shaping the distribution of rain and snowfall around the world. Suspended dust particles, especially in urban and industrial areas, act as a reducing agent for rainfall. Large fine dust (larger than 1 micron) can increase rainfall. But very fine dust particles in the upper atmosphere can suppress heavy rainfall. The current study aimed at investigating atmospheric precipitable water capacity and its relationship with periods of dust occurrences data in South west of Iran during (1986 –2016). In this paper، MODIS surface classification data was used to consider this influence. In this paper، the effect of dust occurances on rainfall studied by using classified data of MODIS/Terra Calibrated Radiances (MOD06). The results of this study by examining remote sensing data such as the amount of atmospheric precipitable water content and the occurrences of dust in some selected cases، showed that over time when dust rises، the amount of atmospheric precipitable water content which indicates the potential for rainfall، significantly reduced.The results of this study showed that one of the effects of dust events in southwestern Iran، there was a decrease in rainfall during a period of thirty years(1986-2016) and dust can significantly to act as reducing agent or rain suppressor in study region. On the other hand، in this study، in proof of dust reducing effect on atmospheric precipitable water content، the high performance of the MOD06 product appeared in the southwestern region of Iran.
1. Abdemanafi, D., Hajjam, S., Meshkatee A. H., Vazifedoost, M. 2014. The case study of impacts of Tehran ambient air pollution on the cloud and precipitation characteristics, SPRING 2018 , Volume 20 , Number 1 (76) ; Page(s) 119 To 130.
2. Abdollahi, V., Pirmoradian, N.,Vazifehdoost, M. Ashrafzadeh, A. 2013. Evaluation of total precipitation water derived from the MODIS sensor using ground based dataset, First National Meteorological Conference, 31 May and 1 June 2013. University of Complementary Industrial Studies and Advanced Technology, Kerman, Iran. Https://civilica.com/doc/209300.
3. Ackerman S. A., Chung H. 1992. Radiative effects of airborne dust on regional energy budgets at the top of the atmosphere, J. Appl. Meteor., 31, 223–233.
4. Ackerman, A. S., Toon O. B., Stevens D. E., Heymsfield A. J., Ramanathan V., Welton E. J. 2000. Reduction of tropical cloudiness by soot, Science, 288(5468), 1042–1047.
5. Alizadeh Choobari O. 2013. Modelling the spatial distribution, direct radiative forcing and impact of mineral dust on boundary layer dynamics, PhD. Thesis, Canterbury University.
6. Alizadeh Choobari O., Zawar-Reza P., Sturman, A. 2014a. The global distribution of mineral dust and its impacts on the climate system: a review. Atmos Res 138:152–165.
7. Alizadeh Choobari O., Zawar-Reza P., Sturman, A. 2014b. The wind of 120 days and dust storm activity over the Sistan Basin, Atmospheric Research, 143: 328–341.
8. Alizadeh, A. 2011. Principles of Applied Hydrology, Ferdowsi University Press, 30th edition.
9. Andreae, M. O., Rosenfeld, D., Artaxo P., Costa A. A., Frank G. P., Longo K. M., Silva-Dias M. A. F. 2004. Smoking rain clouds over the Amazon, Science, 303(5662), 1337–1342.
10. Asakereh, H., & Doostkamian, M. 2014. TEMPO-SPATIAL CHANGES OF PERCEPTIBLE WATER IN THE ATMOSPHERE OF IRAN, Iranian Journal of Water Resources Research, Year 10, Issue 1, Spring and Summer 2014. P: 72-86.
11. Cao, J.J., J.C. Chow, J. Tao, S.C. Lee, J.G. Watson, K.F. Ho, G.H. Wang, C.S. Zhu, and Y.M. Han. 2011. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmos. Environ. 45:1359–1363. doi:10.1016/j. atmosenv.2010.10.056.
12. Dwortzan, Mark. 2016. How aerosols drive the rain‚ Joint Program on the Science and Policy of Global Change‚ January 21. 20169. (http://news.mit.edu/2016/how-aerosols-drive-rain-0121)
13. Ekstrom Marie, Mctainsh Grant H. and Chappell Adrian .2004. “Australian Dust Storms: Temporal Trends and Relationships with Synoptic Pressure Distributions (1960-99)”, International Journal of Climatology, No. 24: PP 1581-1599.
14. Ensafi Moghaddam T. 2018. Analysis of dust occuarrance effects on precipitation changes in South-West of Iran ،A Thesis for Recipt Degree of PHD In Physical Geography-Climatology، Winter 2018, Department of physical Geography, University of Tehran (In Persian).
15. Farajzadeh, M., Karimi, N. 2013. Principles of Satellite Meteorology, Organization for the Study and Compilation of University Humanities Books, Humanities Research and Development Center.
16. Fattahi, E., Ghannad H. 2014. AN ANALYSIS OF SYNOPTIC PATTERNS FOR FLYING DUST STORMS IN SOUTHWESTERN IRAN, Journal of GEOGRAPHY SPRING 2010 , Volume 4 , Number 12; Page(s) 49 To 63.
17. Ferek, R. J., Liu Q. F., Albrecht B. A., Babb D., Garrett T., Hobbs P. V., Strader S., Johnson D., Taylor J. P., Nielsen K., Ackerman A. S., Kogan Y. 2000. Drizzle suppression in ship tracks, J. Atmos. Sci., 57(16), 2707–2728.
18. Golkar, F., Hajam S., Vazifeh Doost, M. 2016. Use of MODIS Products to Help Cloud Seeding Operation, Journal of Climatological Research, Article 8, Volume 1393, Number 19, Spring 2016, Pages: 93-111.
19. Hansen, J., Sato, M., and Ruedy, R. 1997. Radiative forcing and climate response, J. Geophys. Res., 102(D6), 6831–6864, 1997.
20. Huang, J. P., Lin B., Minnis P., Wang T. H., Wang X., Hu Y. X., Yi Y. H., Ayers J. K. 2006. Satellitebased assessment of possible dust aerosols semi-direct e-ect on cloud water path over East Asia, Geophys. Res. Lett., 33(19), doi:10.1029/2006GL026561.
21. Huang, J.-P., Wang Y., Wang T., Yi Y. 2006. Dusty cloud radiative forcing derived from satellite data for middle latitude region of East Asia, Prog. Nat. Sci., 10, 1084–1089.
22. Jalilian, M. 2017. Statistical of Synoptic Analysis of Temporal-Spatial distribution of Iranian Atmospheric Moisture, Master Thesis, Supervisor: Mostafa Karimi Ahmadabad, Consultant: Faramarz Khosh Akhlagh, Faculty of Geography, University of Tehran(In Persian).
23. Kalantari, Farzad .2013. The Relationship between Air Pollution and Rainfall Reduction, Etemad Newspaper, No. 2827, 8/26/92, Page 13 (Society), Page Link: magiran.com/n2849007.
24. Kaufman Y. J., Gao. B. C. 1992. Remote sensing of water vapor in the near IR from EOS/MODIS, IEEE Transaction on Geosciences and Remote Sensing,Vol.30, 1992.
25. Kelsey، V.، Riley، S.، and Minschwaner، K. 2021. Atmospheric Precipitable Water and its Correlation with Clear Sky Infrared Temperature Observations, Atmos. Meas. Tech. Discuss. [preprint] , https://doi.org/10.5194/amt-2021-130، in review, 2021.
26. Kermanshahi, A. H. 2011. Investigation of the causes of dust in the western regions of the country and its impact on climate change, Master Thesis in Environmental Engineering, Faculty of Civil Engineering, Sharif University of Technology.
27. Khorshiddoost A.M., Mohammadi GH.H., Hosseini Sadr A., Javan, KH., Jamali A. 2014. JOURNAL OF GEOGRAPHY AND PLANNING WINTER 2014 , Volume 17 , Number 46; Page(s) 47 To 66.
28. Kianipour، M. ; Masoodian A.; Asakereh، H. 2020. Frequency Distribution Patterns of Precipitable Water in Iran، Physical Geography Research Quaternary، Volume 52، Issue 4، Winter 2021، Pages 553-565.
29. King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B. C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks .2003. Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS, IEEE Trans. Geosci. Remote Sens., 41, 442–458, doi:10.1109/TGRS.2002.808226.
30. Kleespies and McMillin. 1992. Retrieval of precipitable water from bservations in the split window over varying surface temperatures , Journal of Applied Meteorology, 29, 1990.
31. Koch, D., Del Genio, A. D. 2010. Black carbon semi-direct e_ects on cloud cover: review and synthesis, Atmos. Chem. Phys., 10(16), 7685–7696.
32. Kokhanovsky, A.A. , Rozanov, V.V. , Zege, E.P. , Bovensmann, H. and Burrows, J.P. 2003. A semianalytical cloud retrieval algorithm using backscattered radiation spectral region, Journal of Geophysical Research, V.108.
33. Kuitel, H., and Furman, T. 2003. Dust storms in the Middle East, source of origin and their temporal characteristics. Indoor and Built Environment. 12: 419-426
34. Lohmann, U. and Feichter, J. 2005. Global indirect aerosol effects: A review, Atmos. Chem. Phys. 5, 715–737.
35. Meteorological site (2014/7/21), concept of rainwater) ،(http://climatology.ir).
36. Middleton, N.J. 1986. The geography of dust storms. Unpublished PhD thesis, University of Oxford.
37. Miller, R. L. 2008. Dust Impact On Atmospheric Dynamics and Precipitation, Dept. of pplied Physics and Math, Columbia University, New York, NY, USA: https://www.yumpu.com/en/document/view/54159823/atmosphere/5 , Dust2008.tropos.de.
38. Miller, S.D., Kuciauskas, A.P., Liu, M., Ji, Q., Reid, J.S., Breed, D.W., Walker, A.L., Al Mandoos, A. 2008. Haboob dust storms of the southern Arabian Peninsula. J. Geophys. Res. 113, D01202, doi:10.1029/2007JD008550.
39. Ming, Yi. Ramaswamy, V., and Persad ,Geeta. 2010. Two opposing effects of absorbing aerosols on global mean, GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L13701, doi:10.1029/2010GL042895, 2010.
40. Mobasheri, M. R.; Pourbaqer Kurdi, S. M.; Farajzadeh Asl, M; Sadeghi Naeini, A. 2010. Estimation of Total Precipitation Water Using MODIS Satellite Images and Radiosound Data (Study Area: Tehran Region) Modares Journal of Humanities, Spring 2010 - ISC Issue 65 (20 Pages - From 107 to 126).
41. Modarres, R. and Silva, V.P.R. 2007. Rainfall Trends in Arid and Semi-Arid Regions of Iran. Journal of Arid Environments, 70, 344-355. https://doi.org/10.1016/j.jaridenv.2006.12.024
42. Natsagdorj L., Jugdera D., Chung Y.S. 2003. Analysis of Dust Storms Observed in Mongolia during 1937-1999, J. AtmosphericEnvironment, No. 37, PP 1401-1411.
43. Nauss, T. and Kokhanovsky, A. A. 2006. Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data, Atmos. Chem. Phys., 6, 5031–5036, 2006.
44. Rosenfeld, D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett., 26(20), 3105–3108.
45. Rosenfeld, D. 2000. Suppression of rain and snow by urban and industrial air pollution, Science, 287(5459), 1793–1796, doi:10.1126/science.287.5459.1793.
46. Rosenfeld, D. 2006. Aerosols suppressing precipitation in the Sierra Nevada: results of the 2006 winter field campaign. Presentation at the 3rd Annual Climate Change Research Conference, Sacramento, Sept. 2006. See www. climatechange.ca.gov/events/2006-conference/presentations/2006-09-14/2006-09-14.
47. Rosenfeld, D., and I. M. Lensky. 1998. Satellite based insights into precipitation formation processes in continental and maritime convection clouds, Bull. American Meteorological Society, 79, 2457-2476.
48. Rosenfeld, D., Rudich Y., and Lahav, R. 2001. Desert dust suppressing precipitation: A possible desertification feedback loop, Proc. Natl. Acad. Sci. USA, 98, 5975–5980, 2001.
49. Rosenfeld, D., X. Yu, and J. Dai. 2005. Satellite retrieved microstructure of AgI seeding tracks in supercooled layer clouds, J. Applied Meteorology, 44, 760-767.
50. ROSENFELD.PDF Rosenfeld, D., and A. Givati. 2006. Evidence of orographic precipitation suppression by air pollution induced aerosols in the western USA, J. Applied Meteorology, 45, 893-911.
51. Rousta, Iman & Doostkamian, Mehdi & Olafsson, Haraldur & Zhang, Hao & Vahedinejad, Sayed & Sarif, Md. Omar & Vargas, Edgar. 2020. Analyzing the Fluctuations of Atmospheric Precipitable Water in Iran During Various Periods Based on the Retrieving Technique of NCEP/NCAR. The Open Atmospheric Science Journal. ISSN: 1874-2823 - Volume 14, 2020. 12. 48-57. 10.2174/1874282301812010048.
52. Pourhashemi, S., Boroghani, M., Zangane Asadi, M., Amir Ahmadi, A. 2015. 'Analysis relation of vegetation cover on the number of dust event in Khorasan Razavi using geographic information system and remote sensing', Journal of RS and GIS for Natural Resources, 6(4), pp. 33-45.
53. Saieedifar Z, Khosroshahi M, Gohardust A, Ebrahimikhusfi Z, Lotfinasabasl S, Dargahian F. 2020. Investigation of the origin and spatial distribution of high dust concentrations and its synoptical analysis in Gavkhooni basin. Journal of RS and GIS for Natural Resources, 11(4): 47-64.
54. Sehhatkashani, S., Kamali, G.A., Vazifedoost, M., AliAkbari Bidokhti A.A. 2016. STUDY OF AIR QUALITY OVER WEST AND SOUTH WEST IRAN USING AEROSOL OPTICAL THICKNESS PRODUCTS OF MODIS, Journal of SHARIF CIVIL ENINEERING, SPRING 2016 , Volume 32-2 , Number 1.2; Page(s) 91 To 97.
55. Sogacheva, Larisa, Kolmonen, Pekka, Virtanen, Timo H. ,Saponaro, Giulia, Kokhanovsky, Alexander, de Leeuw, Gerrit. 2014. Aerosol-cloud interaction using AATSR NASA Astrophysics Data System (ADS) , 2014-05-01.
56. Tao, W. K., Chen J. P., Li Z. Q., Wang C., Zhang C. D. 2012. Impact of aerosols on convective clouds and precipitation, Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.
57. Teller, A., Levin Z. 2006. The efects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model, Atmos. Chem. Phys., 6(1), 67–80.
58. Tuncok, Kaan. 2021. Impacts of Climate Change in Central Asia, Academia Letters. (https://www.academia.edu/49331497/)
59. Twomey, S. A., Piepgrass M., Wolfe T. L. 1984. An assessment of the impact of pollution on global cloud albedo, Tellus B, 36(5), 356–366.
60. Vieru‚ Tudor. 2011. Air Pollution Leads to Precipitation Pattern Shifts‚These changes can affect the global climate in its entirety. http://news.softpedia.com/news/Air-Pollution-Leads-to-Precipitation-Pattern-Shifts-234290.shtmlNov 14, 2011 09:36 GMT.
61. Wang, H.,Wei, M., Li, G., Zhou, S., and Zeng, Q. 2013. Analysis of precipitable water vapor from GPS measurements in Chengdu region: Distribution and evolution characteristics in autumn: Advances in Space Research, 52, 656–667.
62. Washington, R., M. Todd, N. J. Middleton, and A. S. Goudie .2000. Dust storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations, Ann. Assoc. Am. Geogr., 93(2), 297 – 313.